ISSN 1435-0424 Jahrgang 24 Nr. 10 / 2021

Nr. 10 / 2021 Nr. 10 / 2021

Mitteilungsblatt des Arbeitskreises Meteore e. V. über Meteore, Meteorite, leuchtende Nachtwolken, Halos, Polarlichter und andere atmosphärische Erscheinungen

Aus dem Inhalt:	Seite
Visuelle Meteorbeobachtungen, die Perseiden, kappa-Cygniden und Aurigiden im August .	208
Hinweise für den visuellen Meteorbeobachter im November 2021	215
Die Halos im Juli 2021	215
Summary, Titelbild, Impressum.	218

Visuelle Meteorbeobachtungen, die Perseiden, kappa-Cygniden und Aurigiden im August 2021

Jürgen Rendtel, Eschenweg 16, 14476 Potsdam Juergen.Rendtel@meteoros.de

Visuelle Beobachtungen im August

Mit den Perseiden wird einer der alljährlichen Höhepunkte erreicht. Darüber hinaus waren auch die kappa-Cygniden auffallend aktiv – was die Hinweise auf eine Periodizität von sieben Jahren nach den Maxima von 2007 und 2014 stützt. Außerdem trat das nach der 2019 beobachteten Aktivität modellierte Aurigiden-Maximum am 31. auf. Drei Höhepunkte in einem Monat – dazu weiter unten mehr.

Im August 2021 haben 20(!) Beobachter des AKM ihre Reports visueller Beobachtungen aus 17 Nächten an die IMO übermittelt. Insgesamt wurden in 224,75 Stunden Daten von 6125 Meteoren notiert.

Be	obachter im August 2021	$T_{\rm eff}$ [h]	Nächte	Meteore
BADPI	Pierre Bader, Würzburg	13,15	5	394
ENZFR	Frank Enzlein, Eiche	3,33	1	81
GERCH	Christoph Gerber, Heidelberg	10,83	4	97
GROMA	Mathias Growe, Schwarzenbek	2,43	3	33
KNOAN	André Knöfel, Lindenberg	1,25	1	18
KOSRA	Ralf Koschack, Lendershagen	13,18	6	688
LUTHA	Hartwig Lüthen, Hamburg	8,75	4	245
MOLSI	Sirko Molau, Seysdorf	3,47	3	57
PLUJO	Jonas Plum, Kassel	7,33	2	87
RENCA	Catriona Rendtel, Potsdam	3,34	1	105
RENIN	Ina Rendtel, Potsdam	56,50	18	1952
RENJU	Jürgen Rendtel, Potsdam	40,69	13	1125
RICJA	Janko Richter, Berlin	3,18	1	45
ROWSA	Sasha Roewer, Potsdam	1,92	1	45
SCHSN	Stefan Schmeissner, Kulmbach	14,80	6	211
SPEUL	Ulrich Sperberg, Salzwedel	14,96	7	307
STRPE	Petra Strunk, Herford	8,52	4	293
WACFR	Frank Wächter, Radebeul	4,68	4	96
WACSA	Sabine Wächter, Radebeul	9,61	7	199
WINRO	Roland Winkler, Markkleeberg	2,83	3	47

Dt	T_{A}	T_{E}	λ_{\odot}	$T_{ m eff}$	$\rm m_{\rm gr}$	$\sum_{\mathbf{n}}$	PEF	Ströi R ANT	,			Meteor PAU	e SPO	Beob.	Ort	Meth./ Int.
Aug	ust 202	21														
01	2330	0115	129.66	1.75	6.73	37	8	4	5	2		_	18	RENIN	Wu	C, 3
02	2042	0048	130.55	4.10	6.27	71	28	6	7	3	3	0	24	RENJU	Mq	C, 4
02	2100	2300	130.53	2.00	6.85	49	15	8	5	5	_	_	18	RENIN	Wu	C, 2
03	2055	0125	131.53	4.50	6.85	121	39	12	8	11	9	_	42	RENIN	Wu	C, 5
04	2050	0050	132.47	3.75	6.86	101	31	9	6	10	11	_	34	RENIN	Wu	C, 4
04	2130	2335	132.46	2.08	6.22	34	8	6	2	1	4	0	13	RENJU	Mq	C, 2
05	2050	2350	133.41	3.00	6.85	83	30	10	3	6	6	_	28	RENIN	Wu	C, 3
06	0019	0130	133.51	1.18	6.20	22	16	1	2	2	_	0	4	SPEUL	Sa	С
06	2125	0020	134.39	2.81	5.79	21	9	_	3	1	_	_	8	SCHSN	Ku	C, 6
06	2320	0130	134.45	2.07	6.42	46	26	1	1	2	1	2	13	SPEUL	Sa	P/C, 2
06	2320	0132	134.45	2.20	6.67	68	26	6	5	4	7	_	20	RENIN	Τö	C, 2
06	2330	0200	134.47	2.50	6.32	59	24	8	5	1	5	0	16	RENJU	Mq	C, 3

Decomposition Decompositio									C4	/	1:	1	M - 4				M-+1- /
August 2021 (Forts.) 7 2137 2158 35.30 0.35 6.13 3 2 0 0 0 0 0 16 RENNU Mq C, 2(*) 8 0020 0120 136.43 1.00 6.77 41 16 3 1 2 4 - 15 RENNU Mq C, 2(*) 8 2034 0030 36.29 306 6.27 6.31 5.3 5 3 9 0 18 RENNU Mq C, 2(*) 8 2121 2221 36.42 1.00 6.37 31 17 1 5 3 9 0 18 RENNU Mq C, 2(*) 8 2121 2221 36.32 1.00 6.39 1.0 2 1 2 1 2 - 4 4 WACSA RA C RENNU Mq C, 2(*) 8 2121 2221 36.32 1.00 6.37 31 19 - 6 0 - - 8 SCISIN Ku C, 5 6 8 2240 0.01 36.31 2.14 5.96 34 19 - - 6 0 - - - 8 SCISIN Ku C, 5 6 8 2240 0.01 36.31 2.18 6.37 31 19 - - 6 0 - - - 8 SCISIN Ku C, 5 6 8 2240 0.05 36.34 30 6.77 10 7 51 7 4 6 10 - 29 RENNU ** ** ** ** ** ** ** ** ** ** ** ** **	Dt	T_{A}	$T_{\rm E}$	λ_{\odot}	$T_{\rm eff}$	$\rm m_{\rm gr}$	$\sum_{\mathbf{n}}$	PEF		, -				1	Beob.	Ort	Int.
197 2197 2158 135.30 0.35 6.13 3 2 0 0 0 0 0 0 0 0 0			- (T	. `				1 21						51 0			
10			,	,		0.10									an out	Q1	
18					I		1										
18		l .			I									1		_	
18																	
88 22140 0010 136331 2.41 5.96 34 19 9 7 6 0 7 7 8 8 SCIISN Ku C, 5 8 2225 0156 136.34 3.10 6.77 107 51 7 7 4 6 10 7 29 29 RRNIN Tō C, 6 6 8 230 0005 136.35 3.10 6.77 107 51 7 7 4 6 10 7 29 29 RRNIN Tō C, 6 6 8 230 0005 136.35 2.60 6.34 75 30 4 4 3 3 7 0 18 RENJU Mq C, 3 3 3 3 3 3 3 3 3 3		l			I		1										
88 2221 044 136.33 2.38 6.39 44 27 0 2 1 1 3 3 10 SPEUL Sa C, 3 88 2329 0005 136.35 1.08 6.39 18 5 0 2 2 3 5 0 18 Kachala C 89 2025 2115 137.18 0.83 6.36 7 1 0 0 1 1 0 4 Winro ho C 99 2025 2250 137.22 1.50 6.30 35 13 1 2 3 5 0 11 BADPI Um P, 3 (*) 90 2115 2321 137.22 1.50 6.30 35 13 1 2 3 5 0 11 BADPI Um P, 3 (*) 91 2125 2236 137.21 1.18 6.23 24 9 2 2 0 2 4 -		l .			1									Į.			
88							1										
08 2300 0005 1363.5 1.08 6.39 18 5 5 0 2 2 3 3 - 8 8 WACSA RA C 09 2055 2215 137.18 0.83 6.36 6.7 1 1 0 0 0 1 1 1 0 0 14 WINRO Ho C 09 2055 2250 137.22 1.50 6.30 35 133 1 2 2 1 5 0 - 11 BADPI Um P,3(*) 09 216 2322 137.22 1.76 6.30 35 13 1 2 2 1 2 - 5 5 WACSA RA C 09 2125 2326 137.21 1.18 6.23 24 9 9 2 0 0 2 4 - 7 WACFR RA C 09 2125 2326 137.21 1.18 6.23 24 9 9 2 0 0 2 4 - 7 WACFR RA C 09 2130 0009 137.22 1.08 6.09 30 11 1 3 0 0 0 2 2 1 7 7 0 0 22 RENJU Mq C, 3 09 2337 0033 137.32 2.50 6.27 77 33 6 6 2 1 7 7 0 0 22 RENJU Mq C, 3 09 2337 0033 137.32 2.50 6.27 77 33 6 2 2 1 7 0 0 22 RENJU Mq C, 3 09 2337 0033 137.32 2.50 6.27 77 33 6 2 2 1 7 0 0 22 RENJU Mq C, 3 09 2337 0033 137.32 2.50 6.27 77 33 6 2 2 1 7 0 0 22 RENJU Mq C, 3 09 2337 003 138.33 2.80 6.42 78 48 1 3 3 3 0 - 1 4 8 SPEUL SA C 10 2125 2010 138.19 0.50 6.23 7 7 4 0 0 0 2 0 0 0 1 4 8 SPEUL SA C 10 2125 2000 138.25 1.13 6.07 16 12 - 5 5 13 3 8 RENIN Tō C, 6 10 2254 0124 138.28 2.33 6.34 83 46 6 6 1 1 8 8 2 1 RENJU Mq C, 3 10 2321 000 138.25 1.35 6.61 191 129 10 3 2 1 1 1 8 SPEUL SA C, 4 11 2010 2012 138.29 6.32 6.15 191 129 10 3 2 1 1 1 8 SPEUL SA C, 4 11 2010 2013 139.19 3.18 5.50 45 27 4 7 1 2 1 2 1 2 1 1 4 8 SPEUL SA C, 4 11 2010 213 139.19 3.18 5.50 45 27 4 7 1 2 1 2 1 1 1 - 5 1 1 1 WACSA RA C, 6 11 2020 0139.25 138.94 3.08 6.38 60 43 1 1 1 1 2 2 8 8 PUJU Tō C, 11 11 210 2013 139.14 3.08 6.38 60 45 1 1 1 1 2 2 8 PUJU Tō C, 11 11 210 2215 138.94 1.57 5.98 30 12 1 1 1 - 5 1 1 1 WACSA RA C, 6 11 2010 2321 139.14 3.08 6.38 60 45 1 1 1 1 2 2 8 PUJU Tō C, 11 11 210 2215 139.14 3.08 6.38 60 45 1 1 1 1 2 2 8 PUJU Tō C, 11 11 210 211 211 211 21 2 2 8 PUJU Tō C, 11 11 210 213 139.13 3.18 5.50 45 27 48 1 1 1 2 2 8 PUJU Tō C, 11 11 210 221 319.15 3.18 5.50 45 2 7 8 PUJU Tō C, 1 1 1 WACSA RA C, 6 11 210 213 139.14 3.00 6.39 5 1 8 9 PUJU Tō C, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		l .			I									l .			
18					l				0				_				
199 2055 2250 137.22 1.50 6.30 35 13 1 2 3 3 5 0 11 BADPI Um P, 3 (*) 190 2116 2236 137.22 1.18 6.23 24 9 2 0 2 2 4 -		2330	0206	136.38	2.60		75	39	4	4	3		0	18			C, 3
99	09	2025	2115	137.18	0.83	6.36	7	1	0	0	1	1	0	4	WINRO	Но	
09	09	2055	2250	137.22	1.50	6.30	35	13	1	2	3	5	0	11			$P, 3(^4)$
190	09	2116		137.22	1.27	6.26	19	8	1	2	1	2	_	5			
09	09		2236	137.21	1.18		24		2	0		4	_	7			
19	09				I		1							1			
10					1												
10							1						_				
10		l															
10							1										
10					I												
10		l			I												
10							1							Į.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$!		1							l .			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					ı		l .										
11 2033 2343 139.14 1.57 5.98 30 12 1 1 - - 5 11 WACSA Ra C, 6 11 2041 2215 139.14 1.57 5.98 30 12 1 1 - - 5 11 WACSA Ra C, 6 6 11 2050 0240 139.22 4.83 4.80 75 667 - - - - - - 8 PLUJO Tr C, 11 11 2100 2200 139.13 1.00 6.39 21 8 1 1 1 2 2 8 WINRO Ho C, 2 11 2104 2234 139.14 1.50 6.13 27 16 1 0 0 0 2 7 GROMA Sb C, 3 11 2115 2345 139.17 2.37 5.96 50 37 - 5 0 - 7 SCHSN Ku C, 5 11 2130 2145 139.13 0.25 6.19 5 2 0 0 - 1 2 2 WACFR Ra C 11 2133 2257 139.16 1.40 6.00 22 16 - - - 3 3 3 MOLSI JS C, 3 11 2155 0054 139.17 2.92 5.90 53 339 - - 5 5 9 9 LUTHA Hf C, 6 11 2248 0115 139.23 2.27 6.13 60 42 2 2 - 4 10 WACSA Ra C, 9 11 2330 0100 139.24 1.25 6.20 24 12 2 0 - 4 6 WACFR Ra C, 5 11 2330 0100 139.24 1.25 6.20 24 12 2 0 - 4 6 WACFR Ra C, 5 12 2005 2005 140.11 4.00 6.38 168 121 4 1 1 1 1 30 RENJU HB C, 16 12 2005 0005 140.11 4.00 6.77 218 143 4 3 5 18 45 RENNU HB C, 16 12 2013 2319 140.10 3.10 5.35 27 25 0 0 0 0 1 1 1 GERCH He C, 9 5 12 2032 2114 140.07 0.70 5.64 11 9 - - - - 5 1 1 1 1 GERCH He C, 9 5 12 2055 2156 140.09 0.55 5.60 57 42 - - - 5 1 1 1 1 1 1 1 1 1					I		1										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .			1												
11		l .															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											_						
11 2104 2234 139.14 1.50 6.13 27 16 1 0 0 2 7 GROMA Sb C, 3 11 2115 2345 139.17 2.37 5.96 50 37 - 5 0 - 1 22 WACFR Ra C 11 2133 2257 139.16 1.40 6.00 22 16 - - - 3 3 MOLSI JS C, 3 11 2135 0054 139.17 2.60 6.10 73 44 - -1 - 7 21 STRPE Hf C, 6 11 2236 0054 139.17 2.92 5.90 53 39 - - - 5 9 LUTHA Hf C, 6 11 2244 0115 139.23 2.27 6.13 60 42 2 2 - 4 10 WACSA Ra C, 9 </td <td></td> <td>l .</td> <td></td> <td></td> <td>I</td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>2</td> <td></td> <td>Į.</td> <td></td> <td></td> <td></td>		l .			I				1	1	1	2		Į.			
11 2115 2345 139.17 2.37 5.96 50 37 - 5 0 - 1 2 WACFR Ra C 11 2130 2245 139.16 1.40 6.00 22 16 - - - 3 3 MOLSI JS 2, 3 11 2135 2057 139.17 2.60 6.10 73 44 - -1 - 7 21 STRPE Hf C, 6 11 2156 0054 139.17 2.92 5.90 53 39 - - - 5 9 LUTHA Hf C, 6 11 2238 0136 139.23 2.26 6.92 178 111 4 4 4 18 37 KOSRA Le C, 5 11 2330 0100 139.24 1.25 6.20 24 12 2 0 - 4 6	11	l .			I		1		1	0							
11 2133 2257 139.16 1.40 6.00 22 16 - - - 3 MOLSI JS C, 3 11 2155 0054 139.17 2.60 6.10 73 44 - -1 - 7 21 STRPE Hf C, 6 11 2156 0054 139.17 2.92 5.90 53 39 - - - 5 9 LUTHA Hf C, 6 11 2238 0136 139.23 2.56 6.92 178 111 4 4 4 4 18 37 KOSRA Le C, 5 11 2244 0115 139.23 2.56 6.20 24 12 2 0 4 6 WACFR Ra C, 5 12 2005 2000 140.11 3.34 6.20 15 45 - - - - - -	11	2115	2345	139.17	2.37	5.96	50	37	_	5	0	_		7	SCHSN	Ku	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	2130	2145	139.13	0.25	6.19	5	2	0	0	_	1		2	WACFR	Ra	С
11	11	2133	2257	139.16	1.40	6.00	22	16	_	_	_	3		3		JS	
11 2238 0136 139.23 2.56 6.92 178 111 4 4 4 4 18 37 KOSRA Le C, 5 11 2244 0115 139.23 2.27 6.13 60 42 2 2 - 4 10 WACSA Ra C, 9 11 2330 0100 139.24 1.25 6.20 24 12 2 0 - 4 6 WACFR Ra C, 5 12 2005 2010 140.01 3.34 6.20 105 89 1 - - - RENCA HB C, 11 12 2005 0005 140.11 4.00 6.37 18 143 4 1 1 1 30 RENIN HB C, 16 12 2005 0005 140.11 4.00 6.77 218 143 4 3 5 18 45 RENIN HB C, 6 12 <td>11</td> <td>2155</td> <td>0054</td> <td></td> <td>2.60</td> <td>6.10</td> <td>73</td> <td></td> <td>_</td> <td>-1</td> <td>_</td> <td>7</td> <td></td> <td>21</td> <td></td> <td></td> <td></td>	11	2155	0054		2.60	6.10	73		_	-1	_	7		21			
11 2244 0115 139.23 2.27 6.13 60 42 2 2 4 10 WACSA Ra C, 9 11 2330 0100 139.24 1.25 6.20 24 12 2 0 - 4 6 WACFR Ra C, 5 12 2005 2000 140.11 3.34 6.20 105 89 1 - - - RENCA HB C, 1 12 2005 0005 140.11 4.00 6.38 168 121 4 1 1 1 30 RENJU HB C, 16 12 2005 0005 140.11 4.00 6.77 218 143 4 3 5 18 45 RENIN HB C, 16 12 2013 2319 140.10 3.10 5.35 27 25 0 0 0 1 1 GERCH He C, 9 (5) 12 2032					1				-	_							
11 2330 0100 139.24 1.25 6.20 24 12 2 0 - 4 6 WACFR Ra C, 5 12 2005 2215 140.07 1.92 6.20 45 45 - - - - ROWSA HB C, 7 12 2005 0000 140.11 3.34 6.20 105 89 1 - - 7 8 RENCA HB C, 11 12 2005 0005 140.11 4.00 6.38 168 121 4 1 1 11 30 RENJU HB C, 16 12 2013 2319 140.10 3.10 5.35 27 25 0 0 0 1 1 GERCH He C, 9 (*) 12 2028 2215 140.09 1.51 6.75 66 39 1 1 10 14 KOSRA Le C, 3 12 2032 21					1												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .			1									Į.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
12 2005 0005 140.11 4.00 6.38 168 121 4 1 1 11 30 RENJU HB C, 16 12 2005 0005 140.11 4.00 6.77 218 143 4 3 5 18 45 RENIN HB C, 16 12 2013 2319 140.10 3.10 5.35 27 25 0 0 0 1 1 GERCH He C, 9 (5) 12 2028 2215 140.09 1.51 6.75 66 39 1 1 1 10 14 KOSRA Le C, 3 12 2032 2114 140.07 0.70 5.64 11 9 - - - 2 0 SPEUL Sa C (6) 12 2042 2245 140.10 2.85 6.30 139 89 1 5 1 6 37 BADPI Um C, 9 (7) 12 2058 2156 140.09 0.95 5.50 19 17 - - - 1 1 1 1 1 1 1					I												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .			I												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .			I		1										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .			I		1										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					l												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l			l												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$!									1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .			I		1										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1												
13 0002 0213 140.24 1.78 6.20 80 53 - 4 - 4 19 STRPE Hf C, 3 13 0010 0212 140.24 1.58 6.14 61 47 - 2 - 2 10 LUTHA Hf C, 3 13 2044 2330 141.08 2.70 6.00 38 29 0 0 1 6 2 GERCH He C, 7 (9) 13 2203 0154 141.13 3.10 6.92 205 133 7 1 3 26 35 KOSRA Le C, 6 (10) 13 2225 0015 141.13 1.65 6.39 76 50 4 2 0 2 18 BADPI Um C, 5 13 2330 0205 141.17 2.00 6.50 100 67 4 2 3 6 18 RENIN Tö C, 7 (11) 13 2348 0211 141.18 2.22 6.20 80 60 - 7 - 9 19 STRPE Hf C, 5		l .			I												
13 0010 0212 140.24 1.58 6.14 61 47 - 2 - 2 10 LUTHA Hf C, 3 13 2044 2330 141.08 2.70 6.00 38 29 0 0 1 6 2 GERCH He C, 7 (9) 13 2203 0154 141.13 3.10 6.92 205 133 7 1 3 26 35 KOSRA Le C, 6 (10) 13 2225 0015 141.13 1.65 6.39 76 50 4 2 0 2 18 BADPI Um C, 5 13 2330 0205 141.17 2.00 6.50 100 67 4 2 3 6 18 RENIN Tö C, 7 (11) 13 2348 0211 141.18 2.22 6.20 80 60 - 7 - 9 19 STRPE Hf C, 5		l .			!												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .							_		_			Į.			
13 2203 0154 141.13 3.10 6.92 205 133 7 1 3 26 35 KOSRA Le C, 6 (10) 13 2225 0015 141.13 1.65 6.39 76 50 4 2 0 2 18 BADPI Um C, 5 13 2330 0205 141.17 2.00 6.50 100 67 4 2 3 6 18 RENIN TÖ C, 7 (11) 13 2348 0211 141.18 2.22 6.20 80 60 - 7 - 9 19 STRPE Hf C, 5									0		1						$C, 7(^{9})$
13 2225 0015 141.13 1.65 6.39 76 50 4 2 0 2 18 BADPI Um C, 5 13 2330 0205 141.17 2.00 6.50 100 67 4 2 3 6 18 RENIN Tö C, 7 (11) 13 2348 0211 141.18 2.22 6.20 80 60 - 7 - 9 19 STRPE Hf C, 5					1			133	7								$C, 6^{(10)}$
13 2330 0205 141.17 2.00 6.50 100 67 4 2 3 6 18 RENIN Tö C,7(11) 13 2348 0211 141.18 2.22 6.20 80 60 - 7 - 9 19 STRPE Hf C, 5		l .					1			2				18	BADPI	Um	C, 5
	13	2330		141.17	1		100	67	4	2	3	6		18		Τö	$C, 7(^{11})$
13 2352 0211 141.18 2.32 6.40 92 65 - 5 - 2 20 LUTHA Hf C, 5		l			1				_		_						
	_13	2352	0211	141.18	2.32	6.40	92	65	_	5	_	2		20	LUTHA	Hf	C, 5

Dt	T_{A}	T_{E}	λ_{\odot}	$T_{ m eff}$	$\rm m_{\rm gr}$	$\sum_{\mathbf{n}}$	PEF		, –			Meteore F AUR	SPO	Beob.	Ort	Meth./ Int.
Aug	ust 202	21 (For	ts.)													
14	2005	0205	142.07	6.00	6.86	247	126	11	8	5	27		70	RENIN	Gü	C, 12
14	2017	2245	142.02	2.40	6.05	19	9	0	0	0	4		6	GERCH	${\rm He}$	$C, 4(^{10})$
14	2055	2155	142.01	1.00	6.38	19	6	1	2	1	2		7	WINRO	Но	C, 2
14	2107	0007	142.06	2.89	5.90	39	31	-	0	_	1		7	SCHSN	Ku	C, 6
14	2113	2354	142.05	1.93	6.00	45	24	-	3	_	7		11	STRPE	Hf	C, 4
14	2116	2353	142.05	1.93	6.05	39	23	_	1	_	5		10	LUTHA	Hf	C, 4
14	2155	2350	142.06	1.50	6.46	36	19	0	3	_	3		11	WACFR	Ra	C, 2
14	2244	0115	142.11	1.67	6.49	46	26	1	5	_	2		12	WACSA	Ra	C, 2
14	2215	0215	142.15	4.00	6.24	132	72	8	3	0	16		33	RENJU	Mq	C, 8
15	2222	0222	143.08	4.00	6.34	127	57	12	5	0	17		36	RENJU	Mq	C, 8
15	2230	0206	143.08	3.60	6.77	140	126	13	5	2	23		36	RENIN	Τö	C, 7
24								V o	11 m	o n	d					
24	1940	2055	151.58	1.25	6.15	12	3	1			2	0	6	RENJU	Mq	R
25	1950	2050	152.54	1.00	6.33	11	2	1			2	_	6	RENIN	Ul	C
30	1940	2210	127.63	2.50	6.55	31		3			4	2	22	RENIN	Sk	C, 2
31	1930	2215	158.35	2.75	6.30	34		0				18	16	SPEUL	Sa	C, 8
31	1939	2222	158.38	2.63	5.75	13		0				5	8	GERCH	Не	$C/R, 11(^{12})$
31	1940	2310	158.38	3.50	6.70	70		8			6	20	36	RENIN	Sk	C, 11
31	1942	2017	158.33	0.58	5.90	3		0				0	3	GROMA	Sb	$\mathbf{C}^{'}$
31	1950	2310	158.39	3.33	6.25	54		14				13	27	RENJU	Τö	C, 14
31	2004	2301	158.39	2.87	6.75	78		5				19	54	KOSRA	Le	C, 23
31	2030	2300	158.40	2.50	5.27	12		_				10	2	PLUJO	Tr	C, 10
31	2050	2205	158.39	1.25	6.27	18		2				9	7	KNOAN	Li	$C^{(13)}$
31	2110	2255	158.43	1.72	5.82	9		_				5	4	SCHSN	Ku	$C, 7(^{14})$

```
(1) 2357–0027 c_F = 1.05; 0030–0121 c_F = 1.20
```

Erklärungen zur Übersichtstabelle visueller Meteorbeobachtungen:

Dt	Datum des Beobachtungsbeginns (UT); hier nach T _A sortiert
T_A, T_E	Anfang und Ende der (gesamten) Beobachtung; UT
λ_{\odot}	Länge der Sonne auf der Ekliptik (2000.0) zur Mitte des Intervalls
T_{eff}	effektive Beobachtungsdauer (h)
m_{gr}	mittlere Grenzhelligkeit im Beobachtungsfeld
∑ n	Anzahl der insgesamt beobachteten Meteore
Ströme/spor. Met.	Anzahl der Meteore der angegebenen Ströme bzw. der sporadischen Meteore
, -	Strom nicht bearbeitet: – (z.B. Meteore nicht zugeordnet beim Zählen)
	Radiant unter dem Horizont: /
	Strom nicht aktiv: Spalte leer
Beob.	Code des Beobachters (IMO-Code)
Ort	Beobachtungsort (IMO-Code)
Meth.	Beobachtungsmethode:
	P = Karteneintragungen (Plotting), C = Zählungen (Counting)
	P/C = Zählung (großer Strom) kombiniert mit Bahneintragung (andere Ströme
	R = Koordinatenangaben (Reporting) für Anfang und Ende der Meteorspuren
Int.	Anzahl der Intervalle (falls mehr als eins)

⁽²⁾ $0020-0050 \ c_F = 1.10; \ 0050-0120 \ c_F = 1.15$

⁽³⁾ 2300–0030 $c_F = 1.15$, 1.20h effektiv

 $[\]binom{4}{2}$ 2145–0250 $c_F = 1.15$

 $^(^5)$ $c_F = 1.10$

 $^(^6) c_F = 1.15$

⁽⁷⁾ 2245-2345 $c_F = 1.10 - 1.20$ variabel

 $^(^8) c_F = 1.20$

⁽⁹⁾ 2200–2345 $c_F = 1.11 - 1.42$ variabel

⁽¹⁰⁾ 0021–0118 $c_F = 1.20$

 $^(^{11})$ 2330–0000 LM 5.50 (Ci); Unterbr. 0000–0035, danach klar

 $^(^{12})$ $c_F = 1.10 - 1.20$ variabel

⁽¹³⁾ $c_F = 1.22$

 $^(^{14})$ $c_F = 1.25 - 1.42$ variabel

Beol	bachtungsorte:
Gü	Gülper See, Brandenburg (52°45′7″N; 12°16′21″E)
HB	Heckelberg-Brunow, Brandenburg (52°44′0″N; 13°51′20″E)
He	Heidelberg, Baden-Württemberg (49°25′13″N; 8°44′51″E)
Hf	Herford, Niedersachsen (52°7′25″N; 8°42′6″E)
Но	Hochwald, Sachsen (50°49′N; 14°43′E)
JS	Jelling Sogn, Dänemark (55°44′4″N; 9°24′49″E)
Ku	Kulmbach, Bayern (50°09′30″N; 11°23′30″E)
Le	Lendershagen, Mecklenburg-Vorpommern (54°15′N; 12°51′E)
Li	Lindenberg, Brandenburg (52°12′31″N; 14°07′20″E)
Mb	Markkleeberg, Sachsen (51°17′N; 12°22′E)
Mq	Marquardt, Brandenburg (52°27′23″N; 12°58′15″E)
Mü	Müggelsee, Berlin $(52^{\circ}26'42''N; 13^{\circ}40'37''E)$
Ra	Radebeul, Sachsen $(51^{\circ}7'7''N; 13^{\circ}36'33''E)$
Sb	Schwarzenbek, Schleswig-Holstein (53°30′0″N; 10°28′48″E)
Sk	Skummeslövstrand, Schweden (56°27′37″N; 12°54′46″E)
Ti	Tiefensee, Brandenburg (52°40′N; 13°51′E)
Tö	Töplitz, Brandenburg (52°26′51″N; 12°55′15″E)
Tr	Trendelburg, Hessen $(51^{\circ}33'49''N; 9^{\circ}30'50''E)$
Ul	Ulvshale, Møn, Dänemark (55°2′24″N; 12°16′45″E)
Um	Untermaßfeld, Thüringen ($50^{\circ}31'29''N$; $10^{\circ}24'20''E$)
Wu	Wustrow, Mecklenburg-Vorpommern (54°21′1″N; 12°23′57″E)

Berücksic	chtigte Ströme:	
ANT	Antihelion-Quelle	1. 1.–20. 9.
206 AUR	Aurigiden	25. 8 8. 9.
001 CAP	α -Capricorniden	3. 7.–19. 8.
$012~\mathrm{KCG}$	κ -Cygniden	3. 8.–25. 8.
183 PAU	Piscis Austriniden	15. 7.–10. 8.
007 PER	Perseiden	17. 7.–24. 8.
$005~\mathrm{SDA}$	Südl. δ -Aquariiden	12. 7.–19. 8.
SPO	Sporadisch	

Die Perseiden 2021

Maximum ohne Mond – das musste beim Wetter eine Extra-Herausforderung geben. Die Position der Knotenpassage bei 140° Sonnenlänge lag am 12. August zwischen 19 und 22 Uhr UT, also perfekt in unseren Nachtstunden. Daher war der Wunsch, am 12. abends zu beobachten, groß. In der Potsdamer Region kamen am 12. nachmittags aber immer dichtere Cirren und der Blick auf die Prognose war unklar (in jeder Hinsicht). Mit gutem Willen ließ sich nordöstlich von Berlin ein Bereich mit dünneren Cirren für einige Stunden orten. Gute Bedingungen gab es auch im Westen Deutschlands und in Ostbayern. Immerhin hielt die freie Stelle, für die wir zu fünft nach Heckelberg-Brunow gefahren waren, vier Stunden gut durch. Wie wir erst bei der Abfahrt feststellten, hatte Frank seinen Stamm-Platz bei Tiefensee aufgesucht, was nicht mal 10 km von unserem Platz entfernt war. Doch eines war bemerkenswert: Es gab kein Maximum, wie wir es erwartet hatten.

Abbildung 1: Perseiden-Maximums-Wetter am Abend des 12. August 2021.

Die ZHR lag schon in der Größenordnung von 100, aber es fehlten die dichten Folgen von Perseiden und die "richtig hellen" Exemplare. Naja, nicht ganz, wie schon auf dem Titel der letzten Meteoros zu sehen war (und -8 mag ist schon ordentlich hell).

Umso auffallender war die hohe Rate in der Folgenacht. Wie der Blick auf die international gesammelten Daten zeigte, gab es am Tag (!) einen ausgesprochen kurzen (rund 2 Stunden) und hohen Peak am 14. mit einer ZHR von 130 ± 20 zusätzlich zu normalen ZHR von etwa 40 (Jenniskens und Miskotte, 2021). Der Peak lag bei $141\,^\circ474\pm0\,^\circ005$ – das ist um $8.2^{\rm h}$ UT. Späte hohe Raten gab es auch schon in den Vorjahren, aber wahrscheinlich nicht auf Grund derselben Teilchen-Struktur im Strom.

Die kappa-Cygniden 2021

Als "Nachfolger" der aktiven Perseiden bekommt dieser Strom oft keine Aufmerksamkeit, obwohl beständig und immer wieder mit hellen Feuerkugeln. Die ZHR ist zwar gering, aber die räumliche Teilchendichte ist beachtlich. Wegen der geringen Geschwindigkeit kommen die Teilchen eben nur "langsam" auf die Erde zu. Würden wir die Cygniden so schnell wir die Perseiden durchqueren, wäre die ZHR mehr als drei mal so hoch und die Meteore auch bemerkenswert hell. So ist die ZHR normalerweise bei 5.

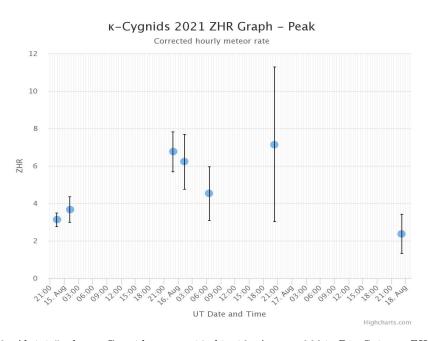


Abbildung 2: Aktivität der κ-Cygniden vom 14. bis 19. August 2021. Die Spitzen-ZHR ist nicht außergewöhnlich hoch, doch liegt der Wert von 8 über dem Mittel. Außerdem gab es in den Nächten mehrere KCG-Feuerkugeln.

Aber 2007 sowie 2014 gab es höhere Raten. Eine Periode ließ sich zwar aus den Daten nicht ber eine längere Zeit ableiten, aber die Vermutung einer 7-Jahres-Periode war da und ließ für 2021 die Aufmerksamkeit steigen. So wurden schon vor der Monatsmitte relativ viele KCG registriert, und am 15. sowie 16. August gab es zus ätzlich noch gehäuft Feuerkugeln. So scheint die 7-Jahres-Periode zumindest gegenwärtig zu passen. Wir werden 2028 mehr dazu wissen.

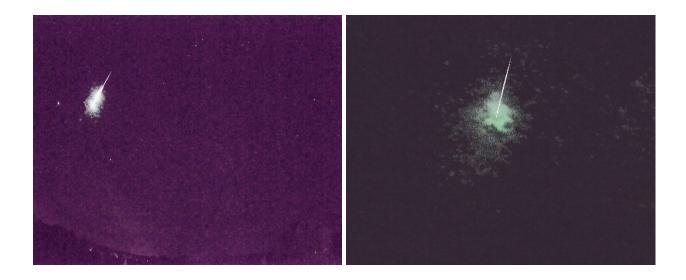


Abbildung 3: Zwei κ-Cygniden aus der Nacht 15./16. August 2021. Von meinem Beobachtungsort (bei Potsdam) erschienen sie mit -3 und -4 mag hoch am Himmel um 23^h 16^m UT und 23^h 41^m UT. Die beiden Aufnahmen stammen von der AllSky7-Kamera in Conow.

Die Aurigiden 2021

Das eher unsichere kleine Maximum des Stromes im August 2019 mit dem unvollständigen Profil hatte zu Modellrechnungen Anlass gegeben. Diese ließen für den Abend des 31. August dieses Jahres ein neuerlichen Peak erwarten.

Verschiedene Modelle lieferten recht gut übereinstimmende Werte:

Sato: $\lambda_{\odot} = 158 \, ^{\circ}383$, 2021 Aug 31, 21^h17^mUT

Lyytinen: $\lambda_{\odot} = 158\,^{\circ}395$, 2021 Aug 31, $21^{\rm h}35^{\rm m}{\rm UT}$ Vaubaillon: $\lambda_{\odot} = 158\,^{\circ}396$, 2021 Aug 31, $21^{\rm h}35^{\rm m}{\rm UT}$

Leider war das Ganze etwas früh in der Nacht, sodass der Radiant noch niedrig am Nordosthimmel stand. Das hat durchaus wichtige Konsequenzen für den Beobachter. Einerseits gibt es schöne lange Meteore, die die Atmosphäre streifen und langsam erscheinen. Das natürlich nur in Horizontnähe. Zum Zenit erscheinen die Aurigiden sehr schnell: 90° Abstand vom Radianten und nahe dem Zenit ergibt 30°/s! Das hat naturgemäß Einfluss auf die Wahrnehmung, denn die Entdeckungswahrscheinlichkeit so extrem schneller Meteore ist geringer als für langsame Meteore – oder anders herum: insbesondere von den schwächeren Meteoren geht ein hoher Anteil verloren gegenüber einer Beobachtung mit mittlerer oder großer Radiantenhöhe.

Eine Auswertung unter Verwendung kurzer Intervalle (teilweise noch auf Nachfrage von den Beobachtern aus ihren Notizen erstellt) ergab ein kurzes Maximum um $21^{\rm h}18^{\rm m}$ UT, also praktisch exakt an der von Mikiya Sato errechneten Position. Besonders bemerkenswert war aber der sehr tiefe Wert des Populationsindexes r=1.65 – ähnlich dem 2007 ebenfalls nach Modellrechnung an berechneter Position beobachteten Maximum für das r=2.74 gefunden wurde.

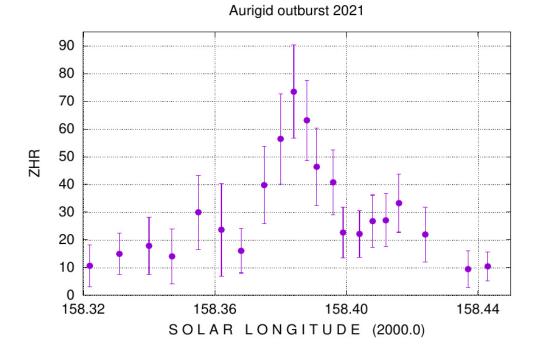


Abbildung 4: Maximum der Aurigiden am 31. August 2021. Die ZHR überstieg kurzzeitig den Wert von 70. Die Unsicherheiten aufgrund der kleinen Stichprobe und der speziellen Bedingungen sind relativ groß, sodass der Vergleich mit dem ebenso speziellen 2007-er Maximum (Vollmond) schwierig ist.

Auch in dieser Nacht war das Wetter nicht überall optimal. Bis zum Nachmittag war ich mir nicht sicher, ob die Wolken hier in Potsdam tatsächlich verschwinden. Nach regenreicher Periode war die Luft auch recht feucht – aber der Nebel hielt sich bis nach Beobachtungsende und Mondaufgang (gegen 22 Uhr UT) zurück.

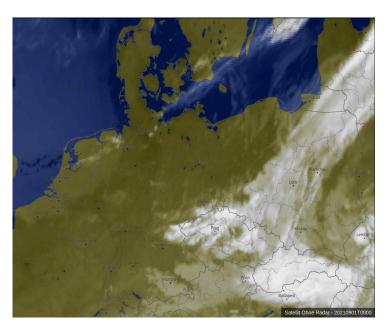
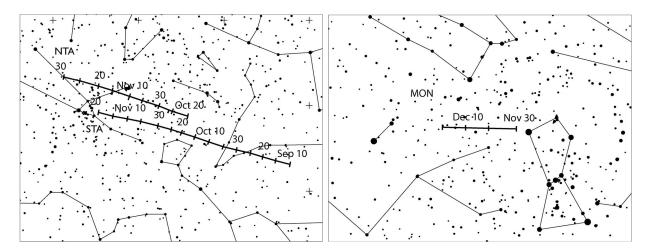


Abbildung 5: Aurigiden-Maximums-Wetter am Abend des 31. August 2021.


Literatur:

Jenniskens P., Miskotte K., 2021: Perseid outburst 2021. *eMeteorNews*, **6**, 460–461. Rendtel J., Koschack R., 2021: Aurigid outburst on 2021 August 31. *WGN*, **49**, 73–75.

Hinweise für den visuellen Meteorbeobachter im November 2021

Zu Monatsbeginn gibt es bei den nördlichen Tauriden Hinweise auf ein breites Maximum, welches ca. 10 Tage von Anfang bis Mitte November andauern kann. Ein Peak im klassischen Sinne bleibt aber aus. Der Neumond am 4.11. erlaubt Beobachtungen über einen längeren Zeitraum.

Die Leoniden (LEO) erreichen ihr traditionelles Maximum in diesem Jahr am 17.11. gegen 09h30m UT, es werden keine erhöhten Raten erwartet, jedoch ist kurz vor Vollmond der sichere Nachweis nur eingeschränkt möglich. Auch die alpha-Monocerotiden (AMO) mit dem Maximum am 21.11., welche 2019 einen kurzen Ausbruch zeigten, sind durch die Mondphase sehr eingeschränkt zu beobachten.

Der bereits erwähnte ekliptikale Komplex der nördlichen Tauriden (NTA) bleibt noch bis zum Monatsende aktiv, wobei der südliche Teil uns noch bis zum 20.11. begleiten wird. Die Raten bewegen sich dabei auf niedrigem Niveau um 5 Meteore je Stunde.

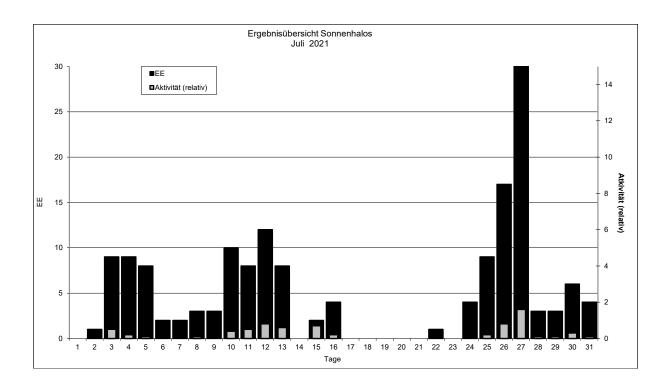
Zum Monatsende beginnen die Monocerotiden (MON) am 27.11. ihre Aktivität, der Neumond am 4.12. bietet zunehmend günstige Bedingungen. Auch das Maximum der November Orioniden (NOO) am 28.11. ist durch den abnehmenden Mond beeinträchtigt.

Die Halos im Juli 2021

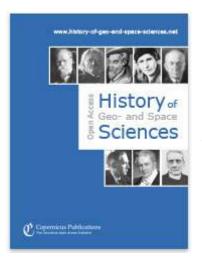
von Claudia und Wolfgang Hinz, Oswaldtalstr. 9, 08340 Schwarzenberg Claudia. Hinz@meteoros.de Wolfgang. Hinz@meteoros.de

Im Juli wurden von 23 Beobachtern an 23 Tagen 169 Sonnenhalos und an 4 Tagen 4 Mondhalos beobachtet. Mit einer Haloaktivität von 7,3 wurde der drittschlechteste Juli-Tiefpunkt in der Haloaktivität erreicht. Es gab nur 1/3 so viele Halos wie normal! Auch die Ergebnisse der beiden langjährigen Beobachter waren unterdurchschnittlich.

Lediglich 6 Sichtungen eines schwachen oder sehr schwachen Zirkumhorizontalbogens rettete den Monat vor dem totalen Untergang. Davon hat allein 3 Exemplare Karl Kaiser aus dem oberösterreichischen Schlägl beigesteuert. Keiner ist aber hell genug, um hier gezeigt zu werden. Insofern bleibt die Monatsauswertung diesmal kurz und bildlos.


Noch ein Blick aufs Wetter, welches ebenfalls einen historischen Tiefpunkt brachte: Der in Deutschland keine hochsommerlichen Gefühle weckende Juli führte die Starkregenepisoden der zweiten Junihälfte fort. Er brachte zunächst regional heftige, teils auch gewittrige Niederschläge samt Überflutungen. Mit Tief BERND aber änderte sich in der zweiten Monatsdekade die Wetterlage und damit einhergehend auch die Intensität und Großflächigkeit der Regenfälle. Am 13. setzen in Nordrhein-Westfalen Regenfälle ein, die sich am 14. zwischen Kölner Bucht und Eifel ausweiteten und ein historisches Ausmaß annahmen. Es folgten in der Eifel verheerende Fluten, die zu einer der für Deutschland folgenreichsten Naturkatastrophen seit der Sturmflut 1962 führten. Auch bis Monatsende überwogen instabile und zu Unwetter tendierende Wetterlagen. Die Bilanz: Der Juli 2021 war deutlich zu nass, etwas zu warm und sonnenscheinarm.

									Be	eo]	ba	cl	nt	er	rül	be	rs	ic	ht	: :	Ju]	Li	2	02	21									
KKGG	1	_	3		5	1	7	_	9		11		13		15		17		L9	21	L	23		25		27		29	_	31	1 \	21	3)	4)
KKGG		2		4		6		8		10		12		14		16		18	2	0	22		24		26		28		30		Ι)	۷)	3)	4)
5602			1								1	1								-									2		5	4	0	4
7402						!	1				2					!				-					!						3	2	0	2
0604					1			1			3		1			1				i				1	1	4	1		1		15	10	3	10
8204		1				:					1					:				-				1	!	3					6	4	0	4
8904											1	1								1			1	1	1		1				6	6	0	6
1305	Ī :					;						1														1				1	3	3	0	3
6906				4	1							1								-								1			7	4	0	4
6107																				-					3	2				1	6	3	0	3
8107						! !		2	2											-					4	4			2		14	5	0	5
0408					1	i						1	1			ĺ				-					1	1	1				6	6	0	6
3108						; !										[- 7					!	3					3	1	0	1
3808			2		1	i				1		2	1			i				i				1	1	2					11	8	0	8
4608				1	1	:										:								1	2	1			X		6	5	1	6
5108			2		1					1		2	1			:				į				1	1	2					11	8	0	8
5508	L					! !										! !				. !					! !	2					2	1	0	1
6210	[3		1				 !				-			1			3					8	4	0	4
7210			1	1		1				2		1	2			!				- !			1		!	2		1			12	9	0	9
7811																1				į					2	1			1		5	4	0	4
8011				1		!				2						1				-					!					1	5	4	0	4
8311	L					1										L				_				1	<u> </u>						2	2	0	2
5317			1	1		!						1	2		2	! !				-			1	1	1					1	11	9	Ō	9
9335			2	1	1	! !	1		1							! !				-	1			1	! !			1			9	8	0	8
44//					1	<u> </u>				1						1				į			_		1						3	3	0	3
-							nn	,											= T							=	Tac	je	(ge	sa	mt)			
		Χ	= :	nur	. M	onc	lha	10				un	ter	rst	ric	che	n =	Sc	nne	n ı	ınd	Мо	ndh	al	0									


									E	rc	je:	bn	is	sü	be	r	si	cŀ	nt	J	ul	i	2	02	21							
EE	1		3		5	:	7		9		11		13		15		17		19		21		23		25		27		29		31	ges
		2		4		6		8		10		12		14		16		18		20		22		24		26		28		30		
01		1	3	6	6	1	1	1		4	4	7	6		1	3								4	7	5	14	3	1	3	2	83
02			1		1				2	3	1	1				1						1			1	3	6		2	2		25
03			1	1	1	1	1	1	1																1	5	7				2	22
05				1						1	1															1	1					5
06						!																										0
07			2			i				1	1	3														1	1			1		10
08						-					1																					1
09						į																										0
10						!																			- 1		1					1
11				1				1					1													1	1					5
12/21						-																			:	1						1
	0		7		8		2		3		8		7		1		0		0		0		0		9		31		3		4	
		1		9		2		3		9		11		0		4		0		0		1		4		17		3		6		153

					E	rsch	ein	unge	n ül	oer	EE 1	.2					
TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG
03	23 23	3808 5108	10	23	8011	12	23	5317	13	23	5317	15	23	8317			

KK	Name / Hauptbeobachtungsort	KK	Name / Hauptbeobachtungsort	KK	Name, Hauptbeobachtungsort	KK	Name, Hauptbeobachtungsort
04	H. + B. Bretschneider, Schneeberg	46	Roland Winkler, Werder/Havel	62	Christoph Gerber, Heidelberg	81	Florian Lauckner, Bucha
06	Andre Knöfel, Lindenberg	51	Claudia Hinz, Schwarzenberg	69	Werner Krell, Wersau	82	Alexander Haußmann, Hörlitz
13	Peter Krämer, Bochum	53	Karl Kaiser, A-Schlägl	72	Jürgen Krieg, Waldbronn	83	Rainer Timm, Haar
31	Jürgen Götze, Adorf bei Chemnitz	55	Michael Dachsel, Chemnitz	74	Reinhard Nitze, Barsinghausen	89	Ina Rendtel, Potsdam
38	Wolfgang Hinz, Schwarzenberg	56	Ludger Ihlendorf, Damme	78	Thomas Klein, Miesbach	93	Kevin Boyle, UK Stoke-on-Trent
44	Sirko Molau, Sevsdorf	61	Günter Busch, Gotha	80	Lars Günther, Rennertshofen		

Beitrag über Eduard Heis erschienen

Die beiden Artikel von Ulrich Sperberg über Eduard Heis, die in den Meteoros-Ausgaben 1/2021 und 2/2021 erschienen, bildeten die Grundlage zu einem englischsprachigen Artikel im Open Access »Journal 'History of Geo- and Space Sciences«:

Ulrich Sperberg: Eduard Heis, an early pioneer in meteor research

Interessenten können den Beitrag online lesen:

https://hgss.copernicus.org/articles/12/163/2021/

English summary

Visual meteor observations, the Perseids, kappa Cygnids and Aurigids in August 2021: 20 observers of the AKM were active in 17 nights and reported data of 6125 meteors observed in almost 225 hours. The Perseid maximum night showed less activity than expected but a late peak with higher a ZHR occurred on August 14. The minor kappa Cygnids yielded enhanced rates this year which seem to confirm a periodic activity pattern with higher rates (after 2007 and 2014) and some bright meteors. The modelled outburst of the Aurigids on August 31 materialised. The ZHR exceeded 70 for a short time around 21:18 UT when the radiant was still low in the sky for European observers.

Hints for the visual meteor observer in November 2021: describe the broad maximum of the Northern Taurids in the first decade of the month. Observations of the Leonids and alpha Monocerotids are disturbed by moonlight. Towards the end of the month the conditions are good to observe the November Orionids and the Monocerotids.

Halo observations in January 2021: 23 observers noted 169 solar halos on 23 days and four lunar halos on four days. The halo activity index (7.3) was extremely low - about a third of the usual halo number was recorded.

A paper on Eduard Heis' work: based on earlier publications in Meteoros 1/2021 and 2/2021 is now published in the open access "Journal History of Geo- and Space Sciences" and can be read online https://hgss.copernicus.org/articles/12/163/2021/

The cover photo: shows an aurora and lunar halo seen on 2021 September 29 at 22:50 CEST in Olderdalen, Norway (69°35.5'N 20°25.3'E), taken with a 2.8/14 lens, ISO setting 6400, exposed 3.5s by Ina Rendtel. Image processing by Andreas Möller.

Unser Titelbild...

... zeigt ein Polarlicht und ein Mondhalo zur gleichen Zeit, aufgenommen am 29. September 2021 um 22.50 MESZ in Olderdalen, Norwegen (69°35.5'N 20°25.3'E) mit einer Walimex 2.8/14, 6400ASA, Bel.-Zeit 3.5s. Eine Bildverarbeitung erfolgte durch Andreas Möller.

© Ina Rendtel

Impressum:

Die Zeitschrift METEOROS des Arbeitskreises Meteore e. V. (AKM) über Meteore, Leuchtende Nachtwolken, Halos, Polarlichter und andere atmosphärische Erscheinungen erscheint in der Regel monatlich. METEOROS entstand durch die Vereinigung der Mitteilungen des Arbeitskreises Meteore und der Sternschnuppe im Januar 1998.

Nachdruck nur mit Zustimmung der Redaktion und gegen Übersendung eines Belegexemplars.

Herausgeber: Arbeitskreis Meteore e. V. (AKM), c/o Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam

Redaktion: André Knöfel, Am Observatorium 2, 15848 Lindenberg

Meteorbeobachtung visuell: Jürgen Rendtel, Eschenweg 16, 14476 Marquardt

Video-Meteorbeobachtung: Sirko Molau, Abenstalstraße 13 b, 84072 Seysdorf

Beobachtungshinweise: Roland Winkler, Brünhildestr. 74, 14542 Werder (Havel)

Feuerkugeln und Meteor-Fotonetz: Jörg Strunk, Kneippstr. 14, 32049 Herford

Halo-Teil: Wolfgang Hinz, Oswaldtalstr. 9, 08340 Schwarzenberg

EN-Kameranetz und Meteorite: Dieter Heinlein, Lilienstraße 3, 86156 Augsburg

Polarlichter: Stefan Krause, Sandklaue 15, 53111 Bonn

Bezugspreis: Für Mitglieder des AKM ist 2021 der Bezug von METEOROS im Mitgliedsbeitrag enthalten.

Für den Jahrgang 2021 inkl. Versand für Nichtmitglieder des AKM 35,00 €. Überweisungen bitte mit der Angabe des Namens und "Meteoros-Abo" an das Konto 2355968009 für den AK Meteore bei der Berliner Volksbank Potsdam, BLZ 10090000

(IBAN: DE29100900002355968009 BIC: BEVODEBB)

Anfragen zum Bezug an AKM, c/o Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam

oder per E-Mail an: Ina.Rendtel@meteoros.de