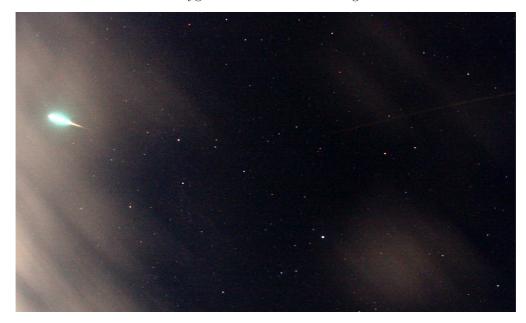
ISSN 1435-0424

Jahrgang 17 Nr. 10 / 2014 ETEOROS

Mitteilungsblatt des Arbeitskreises Meteore e. V. über Meteore, Meteorite, leuchtende Nachtwolken, Halos, Polarlichter und andere atmosphärische Erscheinungen

	a •4
Aus dem Inhalt:	Seite
Visuelle Meteorbeobachtungen im August 2014	190
Perseiden 2014 – viel Mond, wenig Meteore	192
Hinweise für den visuellen Meteorbeobachter im November 2014	193
Einsatzzeiten der Kameras im IMO Video Meteor Network, Juni 2014	193
Die Halos im Juli 2014	198
Interessante Beiträge aus den AKM-Foren im September 2014	203
35. AKM-Seminar vom 2022.03.2015 in Waren (Müritz)	206
Summary	207
Titelbild, Impressum	208
-	


Visuelle Meteorbeobachtungen im August 2014

Jürgen Rendtel, Eschenweg 16, 14476 Potsdam Juergen.Rendtel@meteoros.de

Endlich Perseiden – nur diesmal gebadet in hellem Mondlicht; dazu auf den nächsten Seiten mehr. Die maximalen Raten waren 2014 – offenbar nicht nur wegen des gleißenden Mondlichtes – recht niedrig.

Erneut beteiligten sich mehr Beobachter als in den Vormonaten. Im August 2014 trotzten elf Beobachter in 15 Nächten den zum Teil nicht günstigen Bedingungen. Wann – wenn nicht zum Perseiden-Maximum – wird schon die Nacht unmittelbar nach dem Vollmond zum Beobachten genutzt? In der Nacht 12./13. August wurden von sechs nicht "Lichtscheuen" insgesamt 355 Meteore (davon 263 Perseiden) innerhalb von 17.06 Mondscheinstunden registriert.

Nach Berechnungen von Masahiro Koseki hätten die κ -Cygniden eventuell eine höhere Aktivität zeigen können. Eine kurze Notiz dazu erschien in der IMO-Zeitschrift WGN vom August; ein ausführlicherer Artikel folgt dort noch. Der Radiant dazu sollte nicht dem aus der Liste entsprechen, sondern etwas weiter südwestlich liegen. Bis auf die 11 KCG vom 18. August deuten keine Berichte auf erhöhte Raten hin. Interessant ist jedoch die Aufnahme einer Feuerkugel (-6 mag), die Pierre Bader am 12. um 2045 UT von Höchberg aus beobachtete. Mit einer Winkelgeschwindigkeit von etwa 8°/s (Dauer 1.0 s) passt diese recht gut zu den KCG; der Radiant ist dann aber nicht nahe κ Cygni sondern weiter Richtung Draco.

 κ -Cygnid, aufgenommen von Pierre Bader am 12.8. um 2045 UT von Höchberg nahe Würzburg aus.

Für den gesamten Monat liest sich die Bilanz so: Innerhalb von 65.60 Stunden effektiver Beobachtungszeit wurden insgesamt 1112 Meteore notiert. Das ist natürlich weit unter den Ergebnissen "guter Perseidenjahre" – aber angesichts der Randbedingungen und dank der Einsätze der Beteiligten ganz ordentlich.

Be	obachter im August 2014	$T_{\rm eff}$ [h]	Nächte	Meteore
BADPI	Pierre Bader, Viernau	7.20	3	167
ENZFR	Frank Enzlein, Eiche	4.25	2	93
GERCH	Christoph Gerber, Heidelberg	14.70	7	118
GROMA	Mathias Growe, Schwarzenbek	0.40	1	5
MORSA	Sabine Wächter, Radebeul	1.11	1	10
RENIN	Ina Rendtel, Potsdam	3.94	2	128
RENJU	Jürgen Rendtel, Marquardt	16.28	8	310
SCHSN	Stefan Schmeissner, Kulmbach	6.54	3	118
SCHKA	Kai Schultze, Berlin	1.50	1	18
WINRO	Roland Winkler, Markkleeberg	2.70	1	19
WUSOL	Oliver Wusk, Berlin	6.98	2	126

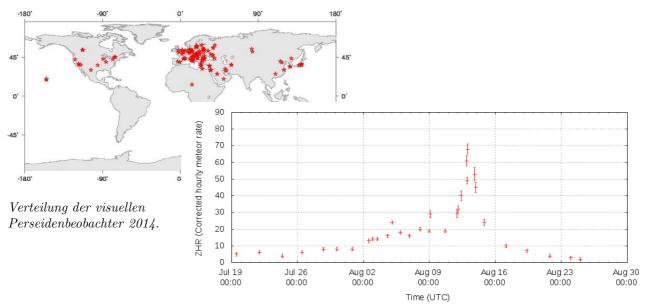
Dt	T_{A}	T_{E}	λ_{\odot}	$T_{ m eff}$	$m_{ m gr}$	$\sum_{\mathbf{n}}$	PER		,	•		e Mete		SPO	Beob.	Ort	Meth./ Int.
Aug	ust 201	4															
01	2210	2357	129.41	1.50	6.31	39	7	_	_	2		/		30	RENIN	26531(7) C, 3
03	2135	0010	131.32	2.44	6.46	89	20	_	-	-	7	/		62	RENIN	26531(8) C, 4
05	2140	0010	133.23	2.37	5.60	21	13	1	1	4	_	/		2	SCHSN	16181	C, 5
05	2325	0115	133.29	1.70	6.25	30	11	2	1	2	1	-		13	BADPI	11605	Р
07	2140	0010	135.15	2.28	5.17	16	8	0	1	1	_	/		6	SCHSN	16181	C, 5
07	2220	0106	135.19	2.67	5.25	13	7	0	0	0	0	-		6	GERCH	11182	$^{\mathrm{C}}$
07	2355	0210	135.24	2.25	6.11	44	18	5	4	3	1	0		13	RENJU	11291	C, 3
08	0000	0210	135.24	2.00	6.13	55	32	4	2	1	4	_		12	BADPI	11605	P, 2
08	2308	0112	136.16	2.05	5.20	8	7	0	0	0	0	_		1	GERCH		С
09	2300	0027	137.10	1.33	5.20	5	2	0	0	0	0	_		3	GERCH		$C(^1)$
10	0015	0135	137.15	1.32	5.84	19	9	3	0	0	1	0		6	RENJU	11292	C, 2
10	1809				mono												
11	2012	2145	138.91	1.55	5.55	22	11	3	0	0	1	/		7		11350	C, 2
11	2145	2209	138.95	0.40	5.40	5	4	_	_	_	0	/		1	GROMA		$C(^{2})$
11	2201	0104	139.01	2.85	5.05	21	16	0	0	0	0	_		5	GERCH		$C, 3 (^1)$
11	2345	0115	139.05	1.50	5.60	16	12	_	_	1	0	_		3	ENZFR		C, 3
12	1955	2210	139.87	2.08	5.95	45	27	5	2	/	1			10	RENJU	11328	$C, 4 (^3)$
12	2025	0027	139.93	3.50	5.68	82	56	2	2	0	5			17		16152	P, 7
12	2045	0110	139.94	3.83	5.21	84	64	2	_	4	1			13	WUSOL		C, 11
12	2103	0112	139.95	3.40	5.30	49	43	0	1	0	0			5	GERCH		$C, 3 (^1)$
12	2140	2310	139.93	1.50	5.04	18	14	_	_	_	2			2	SCHKA		$C, 3 (^1)$
12	2250	0135	140.00	2.75	5.56	77	59	_	_	2	0			16	ENZFR		C, 11
14	2115	2315	141.84	1.89	5.43	13	8	_	_	_	1			4	SCHSN	16181	C, 4 (4)
18	2135	0005	145.70	2.50	6.30	61	20	13			11			17	RENJU	11152	C, 2
18	2243	0010	145.72	1.40	6.10	16	4	2			1			9	GERCH		P
19	2355	0215	146.76	2.25	6.22	48	11	12			4			21	RENJU	11152	C, 2
21	2044	0001	148.57	3.15	5.90	42	7	2			3		2	28	WUSOL		C, 4
25	0010	0215	151.59	2.08	6.34	37	4	9			6		3	15	RENJU	11152	C, 2
27	2100	2345	154.36	2.70	6.17	19	,	5			_		6	13	WINRO		С
27	2115	2217	154.34	1.00	5.60	6		1			1		-	4	GERCH		P
27	2345	0200	154.47	2.25	6.35	34		10			5		6	13	RENJU		C, 2
29	1950	2100	156.22	1.11	5.89	10		2			2		1	5	MORSA	11812	Р

Be obachtung sorte:

 $[\]stackrel{(1)}{c_F}=1.10$ $\stackrel{(2)}{c_F}=1.13$ $\stackrel{(3)}{c_F}=2.125$ (2 Int. je 0.50h) $c_F=1.20,\,1955-2015+2135-2210$ wolkenfrei $\stackrel{(4)}{c_F}=1.42;\,2145-2215+2245-2315$ $c_F=1.11;\,2215-2245$ $c_F=1.05$

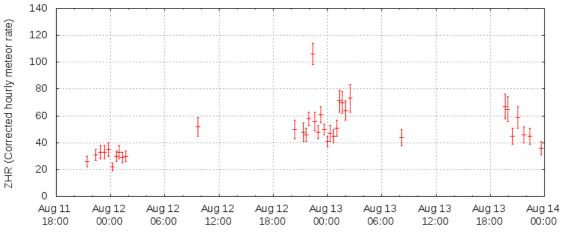
Berüc	ksichtigte Ströme:	
ANT AUR CAP KCG PAU PER SDA SPO	Antihelion-Quelle Aurigiden α -Capricorniden κ -Cygniden Pisces Austriniden Perseiden Südliche δ -Aquariiden Sporadisch (keinem Rad	25.11.–31.12. 25. 8.– 8. 9. 3. 7.–19. 8. 3. 8.–25. 8. 15. 7.–10. 8. 17. 7.–24. 8. 12. 7.–19. 8. d. zugeordnet)

Erklärungen zu den Daten in der Übersichtstabelle sind in Meteoros Nr. 9/2014, S. 171 zu finden.


11110	Berlin-Lankwitz, (13°20′E; 52°25′ N)
11131	Tiefensee, Brandenburg (13°51′E; 52°40′N)
11152	Marquardt, Brandenburg (12°57′50″E; 52°27′34″N)
11182	Rädigke, Brandenburg (12°37′41″ E, 52°2′42″ N)
11291	Lütkenwisch, Brandenburg (11°35′16″E; 53°2′16″N)
11292	Rühstädt, Brandenburg (11°52′17″E; 52°55′10″N)
11328	Jerichow, Sachsen-Anhalt (12°1′44″E; 52°29′28″N)
11350	Arneburg, Sachsewn-Anhalt (12°0′33″E; 52°40′32″N)
11605	Viernau, Thüringen (10°33′30″E; 50 39′42″N)
11714	Schkeuditz, Sachsen (12°2′E; 51°17′N)
11812	Radebeul, Sachsen (13°35′51″E; 51°7′32″N)
16053	Schwarzenbek, Niedersachsen (10°25′ E; 53°30′N)
16103	Heidelberg-Wieblingen, Baden-W. (8°39′E; 49°26′N)
16152	Höchberg, Bayern (9°53′ E; 49°47′ N)
16181	Kulmbach, Bayern (11°23′ E; 50°9′ N)
26531	(7) Sysne, Schweden (18°52′32″E; 57°23′15″N)
26531	(8) Hoburgen, Schweden (18°8′17″E; 56°55′52″N)
	·

Perseiden 2014 – viel Mond, wenig Meteore

Jürgen Rendtel, Eschenweg 16, 14476 Potsdam Juergen.Rendtel@meteoros.de

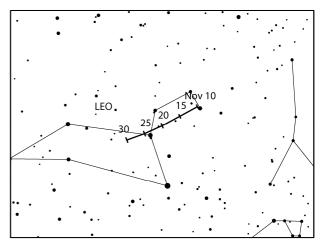

Was soll man schon von einem Perseiden-Maximum bei Vollmond erwarten? Die NASA Science News verwiesen darauf, dass der Strom reich an hellen Meteoren ist. Das stimmt natürlich, aber dennoch machen die schwächeren Perseiden den Hauptteil aus. Und genau diese ließen sich bei den Bedingungen nicht beobachten. Selbst bei transparenter Luft bleibt die Grenzgröße deutlich unter +6 und die wiederholt gestellte Frage, wie genau die Korrektur auf die Standard-Grenzgröße von +6.5 denn funktioniert, taucht erneut auf. Denn die maximale ZHR blieb unter 80! Das trat auch schon bei früheren Vollmond-Maxima auf. Wirkt sich eine merkliche Umgebungshelligkeit (Mond, Dämmerung) in gleicher Weise auf die Wahrnehmung aus wie eine (etwa durch Dunst) verringerte Durchsicht?

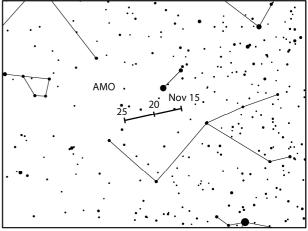
Unter dem Strich ist das Ergebnis jedenfalls ernüchternd; jede Stichprobe blieb klein, und auch gelegentliche helle Perseiden brachten keinen richtigen Spaß beim Beobachten. So hat beispielsweise Sirko Molau daraufhin seine Maximums-Beobachtung gar nicht erst bearbeitet.

ZHR-Profil der Perseiden 2014 nach den elektronisch an die IMO mitgeteilten Daten mit r = 2.5 (konstant).

Das von den visuellen Beobachtern weltweit zusammengetragene Material zeigt für die Maximumsnacht ein eher breites Maximum mit der schon genannten geringen Peak-ZHR. Der Zeitpunkt lässt sich wegen des wenig betonten Peaks nicht genau eingrenzen, insbesondere weil die (europäischen) Tagesstunden des 13. August praktisch nicht durch Daten belegt sind. Möglicherweise höhere ZHR zwischen $3^{\rm h}{\rm UT}$ und $20^{\rm h}{\rm UT}$ (soweit die Lücke) könnten der Beobachtung entgangen sein. Es gibt lediglich einen durch wenige Meteore (61 Perseiden in 5 Intervallen, ZHR= 44 ± 6) belegten Wert aus dieser Zeitspanne bei $140\,{}^{\circ}32$ (August 13, 0815 UT).

ZHR-Profil um das Maximum der Perseiden 2014. Time (UTC)

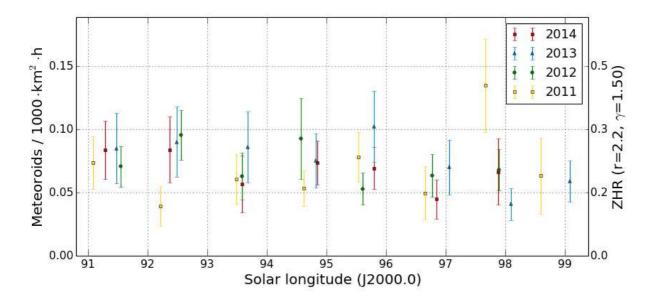

Hinweise für den visuellen Meteorbeobachter im November 2014


von Roland Winkler, Merseburger Str. 6, 04435 Schkeuditz

Zu Monatsbeginn sind die Meteore der ekliptikalen Ströme der nördlichen und südlichen Tauriden bereits aktiv, wobei der südliche Teil uns noch bis in die zweite Monatsdekade begleiten wird. Beim nördlichen Teil besteht um den 12.11. herum die Möglichkeit einer erhöhten Aktivität, welche jedoch durch die Mondphase (Vollmond am 6.11.) nicht sicher nachgewiesen werden kann.

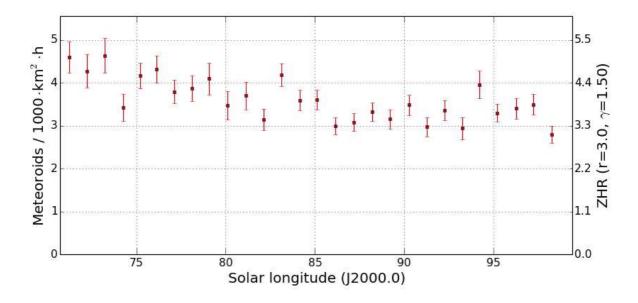
Der "Hauptstrom" im November, die Leoniden, beginnen am 6.11. ihre Aktivität. Der Zeitpunkt des Maximums liegt am 17.11. gegen 22h UT. Aufgrund der günstigen Mondphase (letztes Viertel am 14.11.) tritt kaum eine Störung ein. Ein weiteres Zeitfenster ist am 17.11. für mögliche Maxima vorhergesagt: 16h UT (ZHR rund 15-20) und ein weiteres schwaches Maximum am 21.11. gegen 09h UT. Als günstigster Zeitraum für sinnvolle Beobachtungen ist der nach Mitternacht Ortszeit zu wählen, schon aufgrund der Radiantenhöhe.

Fast zeitgleich zum Maximum der Leoniden starten auch die α-Monocerotiden (AMO) ihre Aktivität. Das Maximum wird am 21.11. gegen 22h-23h UT erreicht. Seine Raten bewegen sich um 3 Meteore je Stunde. Die Bedingungen zum Maximum sind ideal (Neumond am 22.11.), so das ungestörtes Plotting möglich ist.


Zum Monatswechsel beginnen die Monocerotiden (MON) ihre schwache Aktivität mit Raten von ca. 2 Meteoren je Stunde, die bis in die erste Dezemberhälfte anhält. Auch hier sind visuelle Daten willkommen.

Einsatzzeiten der Kameras im IMO Video Meteor Network, Juni 2014

von Sirko Molau, Abenstalstr. 13b, 84072 Seysdorf Sirko. Molau@meteoros.de


Im Juni haben wir zwar die kürzesten Nächte auf der Nordhalbkugel, aber dafür steigt die stündliche Meteorrate unser Videokameras langsam wieder an (von 2,6 im Mai auf 2,9 im Juni). Daher haben wir in der Videometeordatenbank genauso viele Meteore im Mai wie im Juni. Dieses Bild bestätigt sich auch in diesem Jahr. Das Wetter war den Beobachtern weiterhin sehr positiv gesonnen, so dass 56 der 78 im Einsatz befindlichen Kameras auf zwanzig und mehr Beobachtungsnächte kamen. Mit 18.500 Meteoren in 6.500 Stunden Beobachtungszeit konnten wir ein paar hundert Meteore mehr als im Mai aufzeichnen, und fast 15% mehr als im gleichen Vorjahresmonat. Auffällig ist die geringe Schwankungsbreite: In den besten Nächten waren "nur" 68 Kameras aktiv, aber trotz der sehr kurzen Nächten waren nie weniger als 34 Kameras im Einsatz. TEMPLAR5 von Rui Gonvalves war in jeder Juninacht erfolgreich.

Leider ist der Anstieg der mittleren stündlichen Rate nicht auf merkliche Meteorstromaktivität zurückzuführen. Die Juni-Bootiden sind als einziger Juni-Strom in der IMO Working List in den letzten 4 Jahren nicht aktiv gewesen. Zwar wurden fast 400 Meteore diesem Strom zugeordnet, was aber zu einer vernachlässigbaren Flussdichte unter 0,1 Meteoroiden pro 1.000 km² und Stunde führt (Abbildung 1). Es wird sich also mit großer Sicherheit um sporadische Meteore handeln, die nur zufällig zum JBO-Radianten passen.

Abbildung 1: Flussdichteprofil der Juni-Bootiden aus Beobachtungen des IMO Netzwerks 2011 bis 2014. Der Strom hebt sich in keinem Jahr vom sporadischen Hintergrund ab.

Die Antihelionquelle zeigt von Jahr zu Jahr deutliche Variationen. Wenn man jedoch über die vergangenen vier Jahre mittelt, ergibt sich im Laufe des Juni eine leicht fallende Tendenz von zunächst über 4 auf am Ende nur noch 3 Meteoroide pro 1.000 km² und Stunde (Abbildung 2).

Abbildung 2: Gemitteltes Flussdichteprofil der Antihelionquelle im Juni aus Beobachtungen des IMO Netzwerks 2011 bis 2014.

Eine besondere Herausforderung für visuelle und Videobeobachter hatte sich Jürgen Rendtel ausgedacht, der auf der IMC 2014 über "Daytime Meteor Showers" konferierte und die Beobachter aufrief, sich einmal an den Daytime-Arietiden im Juni und den Daytime-Sextantiden im September/Oktober zu versuchen. Diese beiden Tageslichtströme sind aufgrund der Radiantenposition noch am ehesten zu beobachten – trotzdem gibt es auch zu diesen beiden fast nur Radarbeobachtungen. Immerhin konnten wir die Arietiden bei unserer letzten Meteorstromsuche 2013 als eigenständigen Meteorstrom basierend auf 70 Meteoren zwischen 74 und 79° Sonnenlänge (Peak bei 77°) identifizieren. Laut einer Radarstudie von Cambell-Brown sollen die Arietiden mit einem Populationsindex von 2,75 immerhin eine visuelle ZHR in der Größenordnung von 200 erreichen, also aktiver sein als die größten Nachströme! Da lohnt es sich schon einmal, genauer hinzuschauen.

Seit 2011 messen wir mit MetRec während der Beobachtung die stellare die Grenzgröße, so dass wir ab diesem Zeitpunkt die Flussdichte (neu) berechnen können. Erwartungsgemäß ist der Datensatz sehr klein – knapp 100 Arietiden konnten wir seit 2011 aufzeichnen, davon allein 40 in diesem Jahr. Lässt man sich mit dem Flux Viewer das Flussdichteprofil anzeigen, bekommt man zunächst ein leeres Diagramm. Kein Wunder, da eine minimale Radiantenhöhe von 20° voreingestellt ist – unter so "optimalen" Bedingungen sieht man aber keinen Daytime-Arietiden, da der Radiant nur etwa 35° westlich der Sonne liegt. Die meisten Arietiden wurden bei einer Radiantenhöhe von etwa 10° aufgezeichnet, jedoch keiner bei 15° und höher (Abbildung 3).

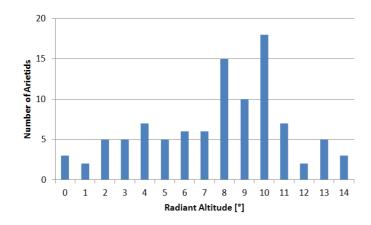


Abbildung 3: Verteilung der 2011-2014 aufgezeichneten Daytime-Arietiden über die Radiantenhöhe.

Setzt man die minimale Radiantenhöhe auf 0°, erhält man das Aktivitätsprofil in Abbildung 4, das leider etwas ernüchternd ist. Anstatt einer Aktivitätsspitze ergibt sich just zum erwarteten Peak ein Minimum. Anscheinend ist das Datensatz noch zu klein, um ein verlässliches Profil zu erhalten. Zudem haben bei derart extremen Beobachtungsbedingungen (Radiant am Hori-

zont, Beobachtung in der Morgendämmerung) kleine systematische Fehler im Modell gleich sehr große Auswirkungen.

Der Absolutwert der Flussdichte hängt bei so geringen Radiantenhöhen merklich vom gewählten Zenitexponenten ab. Bei einem moderaten Wert von γ =1,5 ergeben sich Flussdichten jenseits von 10 Meteoroiden pro 1.000 km² und Stunde. Die ZHR wäre damit um eine Größenordnung kleiner ist als der aus Radardaten extrapolierte Wert. Wählt man γ =2,0, erhöhen sich die Werte um etwa einen Faktor drei.

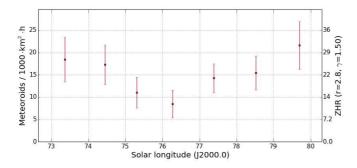


Abbildung 4: Gemitteltes Flussdichteprofil der Daytime-Arietiden aus Beobachtungen des IMO Netzwerks 2011 bis 2014.

Zum Abschluss nochmal ein Vergleich: Die gesamte normierte Sammelfläche aller Videokameras für die Daytime-Arietiden beträgt nur etwa 1/1.000stel der Sammelfläche der Juni-Bootiden, weshalb 400 JBO im Rauschen verschwinden, während 100 ARI eine deutliche Stromaktivität darstellen.

1. Beobachterübersicht

Code	Name	Ort	Kamera	[° ²] [t.LM Eff mag] [kr		Nächte	Zeit [h]	Meteore
ARLRA	Arlt	Ludwigsfelde/DE	LUDWIG2 (0.8/8)	1475	6.2	3779	25	79.9	455
BANPE	Bánfalvi	Zalaegerszeg/HU	HUVCSE01 (0.95/5)	2423	3.4	361	16	15.0	96
BERER	Berkó	Ludanyhalaszi/HU	HULUD1 (0.8/3.8)	5542	4.8	3847	13	59.2	213
DOMESTA	D 1 1: :	E //E	HULUD3 (0.95/4)	4357	3.8	876	14	62.9	78
BOMMA	Bombardini Breukers	Faenza/IT	MARIO (1.2/4.0)	5794 2399	3.3 4.2	739 699	26 21	131.0 70.2	363 116
BREMA	Dieukeis	Hengelo/NL	MBB3 (0.75/6) MBB4 (0.8/8)	1470	5.1	1208	20	62.8	88
BRIBE	Klemt	Herne/DE	HERMINE (0.8/6)	2374	4.2	678	24	82.9	170
DKIDE	Kiciii	Berg. Gladbach/DE	KLEMOI (0.8/6)	2286	4.6	1080	27	88.2	197
CASFL	Castellani	Monte Baldo/IT	BMH1 (0.8/6)	2350	5.0	1611	23	73.7	164
CHOLE	Custenum	Wonte Buido/11	BMH2 (1.5/4.5)*	4243	3.0	371	20	72.2	140
CRIST	Crivello	Valbrevenna/IT	BILBO (0.8/3.8)	5458	4.2	1772	27	129.8	322
			C3P8 (0.8/3.8)	5455	4.2	1586	28	115.8	239
			STG38 (0.8/3.8)	5614	4.4	2007	29	142.5	455
DONJE	Donati	Faenza/IT	JENNI (1.2/4)	5886	3.9	1222	26	141.7	524
ELTMA	Eltri	Venezia/IT	MET38 (0.8/3.8)	5631	4.3	2151	20	104.6	224
FORKE	Förster	Carlsfeld/DE	AKM3 (0.75/6)	2375	5.1	2154	17	59.3	135
GONRU	Goncalves	Tomar/PT	TEMPLAR1 (0.8/6)	2179	5.3	1842	28	163.2	524
			TEMPLAR2 (0.8/6)	2080	5.0	1508	28	164.9	409
			TEMPLAR3 (0.8/8)	1438	4.3	571	27	148.8	193
			TEMPLAR4 (0.8/3.8)	4475	3.0	442	29	155.9	378
			TEMPLAR5 (0.75/6)	2312	5.0	2259	30	161.5	367
GOVMI	Govedic	Sredisce ob Dr./SI	ORION2 (0.8/8)	1447	5.5	1841	24	81.5	286
			ORION3 (0.95/5)	2665	4.9	2069	19	66.0	104
			ORION4 (0.95/5)	2662	4.3	1043	23	83.9	123
HERCA	Hergenrother	Tucson/US	SALSA3 (1.2/4)*	2198	4.6	894	21	172.5	292
HINWO	Hinz	Schwarzenberg/DE	HINWO1 (0.75/6)	2291	5.1	1819	19	58.9	150
IGAAN	Igaz	Baja/HU	HUBAJ (0.8/3.8)	5552	2.8	403	25	117.3	167
		Debrecen/HU	HUDEB (0.8/3.8)	5522	3.2	620	22	107.6	159
		Hodmezovasar./HU	HUHOD (0.8/3.8)	5502	3.4	764	27	120.7	140
		Budapest/HU	HUPOL (1.2/4)	3790	3.3	475	23	102.5	65
JONKA	Jonas	Budapest/HU	HUSOR (0.95/4)	2286	3.9	445	25	118.9	166
KACJA	Kac	Kamnik/SI	CVETKA (0.8/3.8)	4914	4.3	1842	20	81.3	292
		Kostanjevec/SI	METKA (0.8/12)*	715	6.4	640	2	11.9	34
		Ljubljana/SI	ORION1 (0.8/8)	1402	3.8	331	21	88.1	86
		Kamnik/SI	REZIKA (0.8/6)	2270	4.4	840	21	92.8	430
			STEFKA (0.8/3.8)	5471	2.8	379	21	81.3	230
KISSZ	Kiss	Sulysap/HU	HUSUL (0.95/5)*	4295	3.0	355	24	66.3	67
KOSDE	Koschny	Izana Obs./ES	ICC7 (0.85/25)*	714	5.9	1464	27	155.1	1283
		La Palma / ES	ICC9 (0.85/25)*	683	6.7	2951	28	175.6	1550
LOITO	v · ·	Noordwijkerhout/NL	LIC4 (1.4/50)*	2027	6.0	4509	16	45.4	112
LOJTO	Łojek Magiaiowalsi	Grabniak/PL	PAV57 (1.0/5)	1631 5495	3.5 4.0	269	3 10	7.2 23.2	9 165
MACMA	Maciejewski	Chelm/PL	PAV35 (0.8/3.8)	5495 5668	4.0	1584	10		
			PAV36 (0.8/3.8)* PAV43 (0.75/4.5)*	3132	3.1	1573 319	8	24.8 34.2	155 32
			PAV43 (0.75/4.5)	2250	3.1	281	10	16.2	96
MASMI	Maslov	Novosimbirsk/RU	NOWATEC (0.8/3.8)	5574	3.6	773	23	29.0	130
MOLSI	Molau	Seysdorf/DE	AVIS2 (1.4/50)*	1230	6.9	6152	22	75.2	456
1110251	11101111	Seysdoin 22	MINCAM1 (0.8/8)	1477	4.9	1084	27	114.7	257
		Ketzür/DE	REMO1 (0.8/8)	1467	6.5	5491	25	85.4	434
			REMO2 (0.8/8)	1478	6.4	4778	24	85.0	341
			REMO3 (0.8/8)	1420	5.6	1967	12	38.8	38
			REMO4 (0.8/8)	1478	6.5	5358	24	83.3	396
MOSFA	Moschini	Rovereto/IT	ROVER (1.4/4.5)	3896	4.2	1292	23	31.0	128
OCHPA	Ochner	Albiano/IT	ALBIANO (1.2/4.5)	2944	3.5	358	15	63.0	74
OTTMI	Otte	Pearl City/US	ORIE1 (1.4/5.7)	3837	3.8	460	15	52.8	183
PERZS	Perkó	Becsehely/HU	HUBEC (0.8/3.8)*	5498	2.9	460	20	89.3	312
PUCRC	Pucer	Nova vas nad Dra./SI	MOBCAM1 (0.75/6)	2398	5.3	2976	20	80.2	184
ROTEC	Rothenberg	Berlin/DE	ARMEFA (0.8/6)	2366	4.5	911	18	61.3	97
SARAN	Saraiva	Carnaxide/PT	RO1 (0.75/6)	2362	3.7	381	22	114.3	160
			RO2 (0.75/6)	2381	3.8	459	24	118.6	206
			RO3 (0.8/12)	710	5.2	619	23	125.8	334
	_		SOFIA (0.8/12)	738	5.3	907	21	102.9	103
SCALE	Scarpa	Alberoni/IT	LEO (1.2/4.5)*	4152	4.5	2052	16	67.5	127
SCHHA	Schremmer	Niederkrüchten/DE	DORAEMON (0.8/3.8)	4900	3.0	409	25	88.4	172
STOEN	Stomeo	Scorze/IT	MIN38 (0.8/3.8)	5566	4.8	3270	26	93.0	375
			NOA38 (0.8/3.8)	5609	4.2	1911	25	91.8	305
CITED Y.C	G:	YY 0 1000	SCO38 (0.8/3.8)	5598	4.8	3306	25	90.8	399
STRJO	Strunk	Herford/DE	MINCAM2 (0.8/6)	2354	5.4	2751	25	62.7	144
			MINCAM4 (1.0/2.6)	2338	5.5	3590	23	53.2	136
			MINCAM5 (0.9/6)	9791	2.7	552	21	48.4	93
			MINCAM5 (0.8/6)	2349	5.0	1896	24	57.8	130
			MINCAM6 (0.8/6) HUAGO (0.75/4.5)	2395 2427	5.1 4.4	2178	20	33.3	87
TEDIC	Tomlic-1			1471	44	1036	24	104.8	146
TEPIS	Tepliczky	Agostyan/HU				1607	2.4		
		Budapest/HU	HUMOB (0.8/6)	2388	4.8	1607	24	57.5	280
TRIMI	Triglav	Budapest/HU Velenje/SI	HUMOB (0.8/6) SRAKA (0.8/6)*	2388 2222	4.8 4.0	546	18	57.5 50.1	280 150
		Budapest/HU	HUMOB (0.8/6) SRAKA (0.8/6)* HUVCSE03 (1.0/4.5)	2388 2222 2224	4.8 4.0 4.4	546 933	18 7	57.5 50.1 14.4	280 150 36
TRIMI	Triglav	Budapest/HU Velenje/SI	HUMOB (0.8/6) SRAKA (0.8/6)*	2388 2222	4.8 4.0	546	18	57.5 50.1	280 150

^{*} aktives Gesichtsfeld kleiner als Videoframe

2. Übersicht Einsatzzeiten (h)

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
ARLRA	4.8	1.7	-	2.7	4.6	4.5	4.0	3.5	4.1	1.5	0.8	3.8	-	4.3	4.3
BRIBE	-	5.1	2.5	-	4.9	4.9	3.7	2.2	2.7	-	4.6	4.6	3.7	4.2	2.6
	5.1	5.0	4.5	0.8	4.9	4.9	4.9	2.2	4.0	-	4.6	4.5	3.1	0.4	4.6
FORKE	4.3	4.3	2.3	-	2.6	4.1	3.6	4.0	4.0	-	-	3.9	0.4	-	4.6
HINWO	5.0	5.0	1.1	-	2.6	4.9	2.6	4.8	4.7	3.7	-	1.9	-	1.9	4.6
KOSDE	8.1	7.5	4.7	5.6	8.0	7.9	5.0	6.0	8.0	8.0	-	4.0	8.0	8.0	-
	8.3	8.3	5.3	8.3	8.3	8.2	8.2	7.7	6.7	6.2	5.2	4.5	3.8	4.2	3.0
	3.9	3.9	-	-	3.7	3.7	-	-	0.7	-	3.5	3.4	-	-	-
MOLSI	4.9	3.3	4.8	0.4	4.8	4.7	4.7	4.7	4.6	4.6	3.9	2.6	2.8	3.1	4.1
	5.9	4.4	5.8	-	5.7	5.7	5.7	5.7	5.6	5.5	4.5	3.4	4.3	3.5	4.6
	4.7	4.5	-	4.5	4.6	4.4	4.0	2.3	3.7	1.1	3.0	4.0	2.4	4.1	4.1
	4.8	4.5	-	4.7	4.6	4.6	4.3	2.7	3.5	-	1.8	3.7	2.1	4.2	4.1
	-	-	-	-	-	-	4.2	-	3.1	-	2.3	4.4	2.4	4.4	-
	4.8	4.2	-	4.7	4.6	4.6	4.0	1.7	3.4	-	2.5	3.6	2.3	4.0	4.3
ROTEC	4.6	-	-	2.5	4.5	3.9	3.6	3.2	-	2.2	-	-	-	4.0	4.0
SCHHA	4.9	4.9	2.9	1.8	5.1	4.8	2.5	-	2.3	-	5.0	4.9	1.9	4.6	4.9
STRJO	2.7	4.0	2.1	-	3.9	3.9	3.7	3.7	0.5	2.0	3.0	3.6	2.1	2.4	3.4
	1.5	4.0	1.8	-	3.8	3.9	3.2	3.7	-	2.2	3.1	3.6	1.7	2.4	3.6
	-	3.9	0.2	-	1.8	4.3	3.1	4.0	-	2.0	2.8	3.7	1.2	-	4.0
	2.6	4.0	1.5	-	3.9	3.9	2.2	3.7	-	1.7	2.7	3.6	1.8	2.4	3.3
	-	3.7	-	-	3.9	3.9	3.1	3.7	-	-	3.0	3.6	1.3	0.9	0.9
Cummo	236.7	209.1	184.4	213.9	266.6	311.4	330.3	307.7	278.6	254.4	259.8	187.9	148.3	197.6	206.0
Summe															
Summe															
Juni	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Juni ARLRA	16 0.3	4.3	3.4	19 -	2.5	21	22 4.3	23 4.3	-	4.1	3.3	27 2.1	28	29 1.4	30 3.5
Juni	0.3 2.1	4.3 4.1	3.4 2.8		2.5 2.1	1.8 1.8			0.7	4.1 3.8	3.3 3.3	2.1		1.4 3.0	3.5 4.4
Juni ARLRA BRIBE	0.3	4.3	3.4 2.8 4.2	-	2.5	1.8	4.3 4.5 4.6	4.3	-	4.1	3.3 3.3 2.7	2.1 - 1.0	-	1.4	3.5
Juni ARLRA BRIBE FORKE	0.3 2.1	4.3 4.1 0.5 4.6	3.4 2.8 4.2 2.5	-	2.5 2.1	1.8 1.8	4.3 4.5 4.6 4.2	4.3 4.6	0.7	4.1 3.8	3.3 3.3 2.7 2.6	2.1 - 1.0 2.7	-	1.4 3.0	3.5 4.4 4.5
Juni ARLRA BRIBE FORKE HINWO	0.3 2.1 2.1 -	4.3 4.1 0.5 4.6 3.3	3.4 2.8 4.2 2.5 1.8	- - - -	2.5 2.1 0.7	1.8 1.8 4.0	4.3 4.5 4.6 4.2 2.1	4.3 4.6 4.6 4.6 4.5	0.7 1.0	4.1 3.8 3.6	3.3 3.3 2.7 2.6 2.3	2.1 - 1.0 2.7 1.8	- - - -	1.4 3.0 1.2	3.5 4.4 4.5 - 0.3
Juni ARLRA BRIBE FORKE	0.3 2.1 2.1 - - 1.2	4.3 4.1 0.5 4.6 3.3 1.0	3.4 2.8 4.2 2.5 1.8 7.9	- - - - 1.4	2.5 2.1 0.7 -	1.8 1.8 4.0 - - 4.2	4.3 4.5 4.6 4.2	4.3 4.6 4.6 4.6	- 0.7 1.0 - - 7.9	4.1 3.8 3.6 - - 7.9	3.3 3.3 2.7 2.6 2.3 7.9	2.1 - 1.0 2.7 1.8 8.0	8.0	1.4 3.0 1.2 - 1.8	3.5 4.4 4.5 - 0.3 0.8
Juni ARLRA BRIBE FORKE HINWO	0.3 2.1 2.1 -	4.3 4.1 0.5 4.6 3.3 1.0 4.5	3.4 2.8 4.2 2.5 1.8	- - - -	2.5 2.1 0.7 - - 6.5	1.8 1.8 4.0 - 4.2 6.8	4.3 4.5 4.6 4.2 2.1 2.5	4.3 4.6 4.6 4.6 4.5	7.9 8.2	4.1 3.8 3.6	3.3 3.3 2.7 2.6 2.3	2.1 1.0 2.7 1.8 8.0 8.2	- - - 8.0 8.2	1.4 3.0 1.2 - 1.8 3.3	3.5 4.4 4.5 - 0.3 0.8 4.6
Juni ARLRA BRIBE FORKE HINWO KOSDE	0.3 2.1 2.1 - 1.2 2.4	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0	3.4 2.8 4.2 2.5 1.8 7.9 5.0	- - - - 1.4 5.3	2.5 2.1 0.7 - - 6.5 3.0	1.8 1.8 4.0 - 4.2 6.8 3.3	4.3 4.5 4.6 4.2 2.1 2.5	4.3 4.6 4.6 4.6 4.5 5.8	7.9 8.2 2.5	4.1 3.8 3.6 - 7.9 8.2	3.3 3.3 2.7 2.6 2.3 7.9 8.2	2.1 1.0 2.7 1.8 8.0 8.2 1.9	8.0 8.2 2.3	1.4 3.0 1.2 - 1.8 3.3 1.7	3.5 4.4 4.5 - 0.3 0.8 4.6 1.8
Juni ARLRA BRIBE FORKE HINWO	0.3 2.1 2.1 - 1.2 2.4 - 0.7	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0	3.4 2.8 4.2 2.5 1.8 7.9 5.0	1.4 5.3	2.5 2.1 0.7 - - 6.5 3.0	1.8 1.8 4.0 - 4.2 6.8 3.3	4.3 4.5 4.6 4.2 2.1 2.5 -	4.3 4.6 4.6 4.6 4.5 5.8	7.9 8.2 2.5 1.6	4.1 3.8 3.6 - 7.9 8.2 - 3.8	3.3 3.3 2.7 2.6 2.3 7.9 8.2	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5	- - - 8.0 8.2	1.4 3.0 1.2 - 1.8 3.3	3.5 4.4 4.5 0.3 0.8 4.6 1.8 2.8
Juni ARLRA BRIBE FORKE HINWO KOSDE	0.3 2.1 2.1 - 1.2 2.4	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0	3.4 2.8 4.2 2.5 1.8 7.9 5.0	1.4 5.3	2.5 2.1 0.7 - - 6.5 3.0 - 4.5	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1	4.3 4.6 4.6 4.6 4.5 5.8	7.9 8.2 2.5 1.6 1.7	4.1 3.8 3.6 - 7.9 8.2 - 3.8 5.5	3.3 3.3 2.7 2.6 2.3 7.9 8.2 - 4.1 5.5	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7	8.0 8.2 2.3	1.4 3.0 1.2 - 1.8 3.3 1.7	3.5 4.4 4.5 0.3 0.8 4.6 1.8 2.8 1.2
Juni ARLRA BRIBE FORKE HINWO KOSDE	0.3 2.1 2.1 - 1.2 2.4 - 0.7	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 - 3.0 4.3	3.4 2.8 4.2 2.5 1.8 7.9 5.0	1.4 5.3 - 2.8 0.2	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0 2.1	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1 - 5.1 4.1	4.3 4.6 4.6 4.6 4.5 5.8 - 0.5 3.5	7.9 8.2 2.5 1.6	4.1 3.8 3.6 - 7.9 8.2 - 3.8 5.5 4.2	3.3 3.3 2.7 2.6 2.3 7.9 8.2 - 4.1 5.5 4.2	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - 1.8 3.3 1.7	3.5 4.4 4.5 - 0.3 0.8 4.6 1.8 2.8 1.2 3.8
Juni ARLRA BRIBE FORKE HINWO KOSDE	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 4.3 4.3	3.4 2.8 4.2 2.5 1.8 7.9 5.0 - 5.5 3.5 3.6	1.4 5.3 - 2.8 0.2	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9 2.8	1.8 1.8 4.0 	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1 - 5.1 4.1 4.2	4.3 4.6 4.6 4.5 5.8 - 0.5 3.5 4.1	7.9 8.2 2.5 1.6 1.7	4.1 3.8 3.6 - 7.9 8.2 - 3.8 5.5 4.2 4.2	3.3 3.3 2.7 2.6 2.3 7.9 8.2 - 4.1 5.5 4.2 4.3	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - 1.8 3.3 1.7	3.5 4.4 4.5 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7
Juni ARLRA BRIBE FORKE HINWO KOSDE	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 4.3 4.3 4.3	3.4 2.8 4.2 2.5 1.8 7.9 5.0 - 5.5 3.5 3.6 3.3	1.4 5.3 - 2.8 0.2	2.5 2.1 0.7 - - 6.5 3.0 - 4.5 2.9 2.8 2.1	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0 2.1 2.5	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1 - 5.1 4.1 4.2	4.3 4.6 4.6 4.5 5.8 - 0.5 3.5 4.1	7.9 8.2 2.5 1.6 1.7	4.1 3.8 3.6 - 7.9 8.2 - 3.8 5.5 4.2 4.2	3.3 3.3 2.7 2.6 2.3 7.9 8.2 - 4.1 5.5 4.2 4.3	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2 1.5 0.8	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - 1.8 3.3 1.7	3.5 4.4 4.5 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7 3.3
Juni ARLRA BRIBE FORKE HINWO KOSDE MOLSI	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 4.3 4.3 4.3	3.4 2.8 4.2 2.5 1.8 7.9 5.0 - 5.5 3.5 3.6 3.3 3.5	1.4 5.3 - 2.8 0.2	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9 2.8 2.1 2.6	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0 2.1 2.5 -	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1 - 5.1 4.1 4.2	4.3 4.6 4.6 4.6 4.5 5.8 - 0.5 3.5 4.1	7.9 8.2 2.5 1.6 1.7	4.1 3.8 3.6 - 7.9 8.2 - 3.8 5.5 4.2 4.2 4.2	3.3 3.3 2.7 2.6 2.3 7.9 8.2 - 4.1 5.5 4.2 4.3	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2 1.5 0.8 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - 1.8 3.3 1.7 - 0.2	3.5 4.4 4.5 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7 3.3
Juni ARLRA BRIBE FORKE HINWO KOSDE MOLSI	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4 - - 3.1	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 - 3.0 4.3 4.3 4.3 4.3	3.4 2.8 4.2 2.5 1.8 7.9 5.0 - 5.5 3.5 3.6 3.3 3.5 2.7	1.4 5.3 - 2.8 0.2	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9 2.8 2.1 2.6 1.5	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0 2.1 2.5 - 2.7 2.1	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1 - 5.1 4.1 4.2 - 4.2	4.3 4.6 4.6 4.6 4.5 5.8 - 0.5 3.5 4.1 - 3.7 4.1	7.9 8.2 2.5 1.6 1.7	4.1 3.8 3.6 - 7.9 8.2 - 3.8 5.5 4.2 4.2 4.2 4.2	3.3 3.3 2.7 2.6 2.3 7.9 8.2 - 4.1 5.5 4.2 4.3 4.1	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2 1.5 0.8 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - 1.8 3.3 1.7 - 0.2	3.5 4.4 4.5 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7 3.3 3.7 2.9
Juni ARLRA BRIBE FORKE HINWO KOSDE MOLSI ROTEC SCHHA	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4 - - 3.1 1.9	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 4.3 4.3 4.3 4.3 4.1	3.4 2.8 4.2 2.5 1.8 7.9 5.0 - 5.5 3.5 3.6 3.3 3.5 2.7 4.8	1.4 5.3 - 2.8 0.2	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9 2.8 2.1 2.6 1.5 2.5	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0 2.1 2.5 - 2.7 2.1 3.5	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1 - 5.1 4.1 4.2 - 4.2	4.3 4.6 4.6 4.6 4.5 5.8 - 0.5 3.5 4.1 - 3.7 4.1	7.9 8.2 2.5 1.6 1.7	4.1 3.8 3.6 - 7.9 8.2 - 3.8 5.5 4.2 4.2 4.2 4.1 2.9	3.3 3.3 2.7 2.6 2.3 7.9 8.2 - 4.1 5.5 4.2 4.3 4.1 2.0	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2 1.5 0.8 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - 1.8 3.3 1.7 - 0.2 - 0.2 -	3.5 4.4 4.5 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7 3.3 3.7 2.9 4.7
Juni ARLRA BRIBE FORKE HINWO KOSDE MOLSI	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4 - - 3.1 1.9	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 4.3 4.3 4.3 4.3 4.3 4.2 1.1 3.5	3.4 2.8 4.2 2.5 1.8 7.9 5.0 - 5.5 3.6 3.3 3.5 2.7 4.8 1.4	1.4 5.3 2.8 0.2	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9 2.8 2.1 2.6 1.5 2.5 1.6	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0 2.1 2.5 - 2.7 2.1 3.5 1.0	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1 - 5.1 4.1 4.2 - 4.2 - 4.9 1.3	4.3 4.6 4.6 4.6 4.5 5.8 - - 0.5 3.5 4.1 - 3.7 4.1 4.9 2.4	- 0.7 1.0 - 7.9 8.2 2.5 1.6 1.7 - -	4.1 3.8 3.6 - 7.9 8.2 - 3.8 5.5 4.2 4.2 4.2 4.2 4.1 2.9 3.5	3.3 3.3 2.7 2.6 2.3 7.9 8.2 - 4.1 5.5 4.2 4.3 - 4.3 4.1 2.0 3.6	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2 1.5 0.8 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - 1.8 3.3 1.7 - 0.2 - 0.2 -	3.5 4.4 4.5 - 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7 3.3 3.7 2.9 4.7 0.9
Juni ARLRA BRIBE FORKE HINWO KOSDE MOLSI ROTEC SCHHA	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4 - - 3.1 1.9 1.8	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 4.3 4.3 4.3 4.3 4.3 4.3 5 3.3	3.4 2.8 4.2 2.5 1.8 7.9 5.0 - 5.5 3.5 3.6 3.3 3.5 2.7 4.8 1.4 1.2	1.4 5.3 - 2.8 0.2 - - 1.9	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9 2.8 2.1 2.6 1.5 2.5 1.6	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0 2.1 2.5 - 2.7 2.1 3.5 1.0 0.9	4.3 4.5 4.6 4.2 2.1 2.5 3.1 - 5.1 4.1 4.2 - 4.2 - 4.9 1.3 1.1	4.3 4.6 4.6 4.6 4.5 5.8 - - 0.5 3.5 4.1 - 3.7 4.1 4.9 2.4 2.0	- 0.7 1.0 - 7.9 8.2 2.5 1.6 1.7 - - -	4.1 3.8 3.6 - 7.9 8.2 - 3.8 5.5 4.2 4.2 4.2 4.2 4.1 2.9 3.5 3.0	3.3 3.3 2.7 2.6 2.3 7.9 8.2 4.1 5.5 4.2 4.3 - 4.3 4.1 2.0 3.6 0.4	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2 1.5 0.8 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - - 1.8 3.3 1.7 - - 0.2 - 0.2 - 0.2 - 0.7	3.5 4.4 4.5 - 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7 3.3 3.7 2.9 4.7 0.9
Juni ARLRA BRIBE FORKE HINWO KOSDE MOLSI ROTEC SCHHA	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4 - - 3.1 1.9 1.8 1.6	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 5.3 4.3 4.3 4.3 4.3 4.3 4.2 1.1 3.5 3.0	3.4 2.8 4.2 2.5 1.8 7.9 5.0 - 5.5 3.5 3.6 3.3 3.5 2.7 4.8 1.4 1.2 0.7	1.4 5.3 - 2.8 0.2 - - 1.9	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9 2.8 2.1 2.6 1.5 2.5 1.6	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0 2.1 2.5 - 2.7 2.1 3.5 1.0 0.9 0.7	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1 - 5.1 4.1 4.2 - 4.2 - 4.9 1.3 1.1 2.0	4.3 4.6 4.6 4.6 4.5 5.8 - 0.5 3.5 4.1 - 3.7 4.1 4.9 2.4 2.0 2.3		4.1 3.8 3.6 7.9 8.2 3.8 5.5 4.2 4.2 4.2 4.1 2.9 3.5 3.0 2.8	3.3 3.3 2.7 2.6 2.3 7.9 8.2 4.1 5.5 4.2 4.3 4.1 2.0 3.6 0.4 4.2	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2 1.5 0.8 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - - 1.8 3.3 1.7 - - 0.2 - 0.2 - 0.2 - 0.7 0.7	3.5 4.4 4.5 - 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7 3.3 3.7 2.9 4.7 0.9 0.5 0.8
Juni ARLRA BRIBE FORKE HINWO KOSDE MOLSI ROTEC SCHHA	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4 - - 3.1 1.9 1.8 1.6	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 5.3 3.3 2.0 2.9	3.4 2.8 4.2 2.5 1.8 7.9 5.0 	1.4 5.3 - 2.8 0.2 - - 1.9	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9 2.8 2.1 2.6 1.5 2.5 1.6 -	1.8 1.8 4.0	4.3 4.5 4.6 4.2 2.1 2.5 3.1 - 5.1 4.1 4.2 - 4.2 - 4.9 1.3 1.1	4.3 4.6 4.6 4.6 4.5 5.8 - 0.5 3.5 4.1 - 3.7 4.1 4.9 2.4 2.0 2.3 2.3	- 0.7 1.0 - 7.9 8.2 2.5 1.6 1.7 - - -	4.1 3.8 3.6 7.9 8.2 3.8 5.5 4.2 4.2 4.2 4.2 4.1 2.9 3.5 3.0 2.8 3.5	3.3 3.3 2.7 2.6 2.3 7.9 8.2 4.1 5.5 4.2 4.3 4.3 4.1 2.0 3.6 0.4 4.2 3.6	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2 1.5 0.8 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - - 1.8 3.3 1.7 - - 0.2 - 0.2 - 0.2 - 0.7 0.7 0.5	3.5 4.4 4.5 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7 3.3 3.7 2.9 4.7 0.9 0.5 0.8 0.7
Juni ARLRA BRIBE FORKE HINWO KOSDE MOLSI ROTEC SCHHA	0.3 2.1 2.1 - 1.2 2.4 - 0.7 1.4 - - 3.1 1.9 1.8 1.6	4.3 4.1 0.5 4.6 3.3 1.0 4.5 3.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 5.3 4.3 4.3 4.3 4.3 4.3 4.2 1.1 3.5 3.0	3.4 2.8 4.2 2.5 1.8 7.9 5.0 - 5.5 3.5 3.6 3.3 3.5 2.7 4.8 1.4 1.2 0.7	1.4 5.3 - 2.8 0.2 - - 1.9	2.5 2.1 0.7 - 6.5 3.0 - 4.5 2.9 2.8 2.1 2.6 1.5 2.5 1.6	1.8 1.8 4.0 - 4.2 6.8 3.3 - 4.0 2.1 2.5 - 2.7 2.1 3.5 1.0 0.9 0.7	4.3 4.5 4.6 4.2 2.1 2.5 - 3.1 - 5.1 4.1 4.2 - 4.2 - 4.9 1.3 1.1 2.0	4.3 4.6 4.6 4.6 4.5 5.8 - 0.5 3.5 4.1 - 3.7 4.1 4.9 2.4 2.0 2.3		4.1 3.8 3.6 7.9 8.2 3.8 5.5 4.2 4.2 4.2 4.1 2.9 3.5 3.0 2.8	3.3 3.3 2.7 2.6 2.3 7.9 8.2 4.1 5.5 4.2 4.3 4.1 2.0 3.6 0.4 4.2	2.1 1.0 2.7 1.8 8.0 8.2 1.9 3.5 3.7 1.2 1.5 0.8 1.2	8.0 8.2 2.3 0.7	1.4 3.0 1.2 - - 1.8 3.3 1.7 - - 0.2 - 0.2 - 0.2 - 0.7 0.7	3.5 4.4 4.5 - 0.3 0.8 4.6 1.8 2.8 1.2 3.8 3.7 3.3 3.7 2.9 4.7 0.9 0.5 0.8

3. Ergebnisübersicht (Meteore)

Juni	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
ARLRA	32	1	-	3	34	23	14	16	11	6	1	13	-	24	40
BRIBE	-	6	2	-	11	8	6	4	3	-	9	15	5	13	8
	14	11	6	1	9	13	9	3	6	-	9	14	11	2	16
FORKE	4	4	4	-	5	13	11	16	8	-	-	6	1	-	13
HINWO	10	6	3	-	9	19	9	13	13	6	-	6	-	6	11
KOSDE	70	51	28	46	83	56	21	66	74	61	-	14	77	71	-
	56	77	17	99	83	76	68	86	83	69	68	21	38	22	25
	10	13	-	-	16	5	-	-	1	-	5	7	-	-	-
MOLSI	36	26	23	2	36	33	24	38	18	9	7	9	11	16	24
	8	9	20	-	15	17	19	10	12	7	4	4	6	12	11
	22	8	-	16	30	33	20	2	5	1	10	21	12	22	30
	20	3	-	11	25	23	15	8	5	-	7	8	3	12	22
	-	-	-	-	-	-	7	-	1	-	2	2	2	7	-
	28	8	-	12	26	24	14	1	7	-	7	19	6	26	18
ROTEC	6	-	-	1	5	7	2	2	-	1	-	-	-	5	6
SCHHA	2	6	3	3	16	11	4	-	5	-	12	9	1	14	14
STRJO	6	8	1	-	21	8	4	7	2	2	4	11	3	8	9
	3	11	3	-	11	11	5	8	-	3	12	14	3	7	6
	-	4	1	-	7	9	5	5	-	1	5	7	5	-	7
	3	7	2	-	13	10	7	5	-	3	7	7	3	6	11
	-	6	-	-	5	6	4	3	-	-	4	5	5	6	5
Summe	675	494	430	550	820	800	872	820	696	649	583	426	367	551	601

Juni	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
ARLRA	1	23	9	-	18	7	43	24	-	39	30	4	-	5	34
BRIBE	2	6	6	-	4	4	10	8	4	7	4	-	-	10	15
	6	1	10	-	2	11	5	9	4	5	2	1	-	3	14
FORKE	-	16	3	-	-	-	13	8	-	-	8	2	-	-	-
HINWO	-	7	6	-	-	-	8	7	-	-	5	5	-	-	1
KOSDE	13	7	68	8	-	39	13	48	76	78	70	72	67	3	3
	19	29	40	37	59	53	-	-	80	79	80	77	88	9	12
	-	12	-	-	7	5	7	-	4	-	-	4	4	9	3
MOLSI	2	-	-	-	-	-	-	-	15	55	50	10	2	-	10
	2	4	14	4	9	5	17	1	6	19	12	5	-	-	5
	-	45	20	1	13	4	32	19	-	25	28	1	-	-	14
	-	18	17	-	14	5	27	24	-	23	31	2	-	1	17
	-	4	4	-	2	-	-	-	-	4	-	1	-	-	2
	-	27	20	-	9	15	26	27	-	21	34	2	-	1	18
ROTEC	4	9	6	-	3	1	-	6	-	10	13	-	-	-	10
SCHHA	4	2	8	1	3	6	12	15	-	5	1	-	-	6	9
STRJO	4	4	1	-	5	1	2	8	-	11	9	-	-	3	2
	3	8	2	-	-	2	2	10	-	8	1	-	-	2	1
	-	3	1	-	2	2	3	6	-	6	11	-	-	1	2
	3	6	1	-	1	1	3	11	-	9	5	-	-	4	2
	1	5	1	-	2	3	-	6	-	5	11	-	-	2	2
Summe	240	605	792	454	577	616	545	442	430	745	1055	809	782	346	721

Die Halos im Juli 2014

von Claudia und Wolfgang Hinz, Oswaldtalstr. 9, 08340 Schwarzenberg Claudia. Hinz@meteoros.de Wolfgang. Hinz@meteoros.de

Im Juli wurden von 23 Beobachtern an 29 Tagen 297 Sonnenhalos und an 5 Tagen 9 Mondhalos beobachtet. Mit einer relativen Haloaktivität von 17,6 lag der Monat unterhalb des Mittelwertes der SHB. Auch die langjährigen Beobachter erreichten ihr Monatssoll nicht. Die einzigen Höhepunkte waren das Auftreten des Zirkumhorizontalbogens, der 6 Mal beobachtet werden konnte. Halophänomene gab es nicht. Allerdings wurden außerhalb des SHB-Gitters mehrere umfangreichere Haloerscheinungen beobachtet, was wieder einmal zeigt, wie regional Halos auftreten können. Diese werden hier zwar genannt, können aber nicht in die Haloaktivität eingehen.

Der Juli war deutlich zu warm, extrem nass und reich an Gewittern. Es war ein mehr als abwechslungsreicher Wettercocktail. Dazu gehörten Hitzetage, extreme Unwetter und enorme Regenmengen bei manchmal nahezu tropischen Wetterverhältnissen. In der 2. Juliwoche lud Tief MICHAELA riesige Regenmengen über Deutschland ab. Während Hoch AYMEN am Ende des 2. Monatsdrittels eine kurze Hitzewelle brachte, sorgte Tief PAULA in der letzten Dekade für ausgeprägte Gewitterlagen. Insgesamt war der Juli bei reichlich Sonnenschein deutlich zu warm und sehr regnerisch.

04.07.: Ring von Bishop mit 22°-Ring und Zirkumhorizontalbogen. Foto: Michael Großmann

An den ersten Julitagen wurde durch eine kräftige Südströmung Saharastaub vor allem in das Alpengebiet geblasen. Michael Großmann gelang am 04.07. in Kämpfelbach die seltene Aufnahme von Halo und Ring von Bishop in einem Bild. Neben 22°-Ring war auch der Zirkumhorizontalbogen dabei, der an diesem Tag auch von Kevin Förster (KK77) in Carlsfeld beobachtet werden konnte.

Interessanterweise hat der Saharastaub am Alpenrand vielfach das Open-Air-Public-Viewing der Europa-EM gerettet. Denn ab Mittag waren eigentlich starke Gewitter vorhergesagt, die dank Saharasand komplett ausblieben. Stattdessen wurde jegliche hochreichende Konvektion im mittelhohen Wolkenniveau gedeckelt, die Wolken liefen breit und der Alpenföhn (bis 150 km/h!) trocknete sie aus.

04.07.: Bildung mittelhoher Wolken und Sichttrübung durch Saharastaub (links, Quelle: www.panomax.at) und Staubablagerung im 12-Stunden-Filter auf der Zugspitze (rechts, Foto: Claudia Hinz)

Am 06. und 07. wurden weitere Male der Zirkumhorizontalbogen beobachtet (KK31 und Sven Aulenberg in Saarburg).

07.07.: Zirkumhorizontalbogen in Saarburg. Fotos: Sven Aulenberg

Der haloreichste Tag war der 13., als Tief NIKE von dem schon erwähnten Hoch AYMEN abgelöst wurde. Neben dem Zirkumhorizontalbogen (KK31) wurde auch der Horizontalkreis und eine einzeln stehende 120°-Nebensonne (KK55) beobachtet.

13.07.: 22°-Ring, umschriebener Halo und vollständiger Horizontalkreis in Miesbach (links, Foto: Thomas Klein) und allein stehende 120°-Nebensonne in Chemnitz (rechts, Foto: Michael Dachsel)

Auch am 17.07. sorgte AYMEN für etwas reicheren Halosegen mit umschriebenem Halo, Horizontalkreis (KK62) und Zirkumhorizontalbogen (KK62). Andreas Zeiske (KK75) beobachtete zudem auf einem Flug von Frankfurt nach Berlin sehr helle Nebensonne (H=3) sowie Untersonne und rechte Unternebensonne.

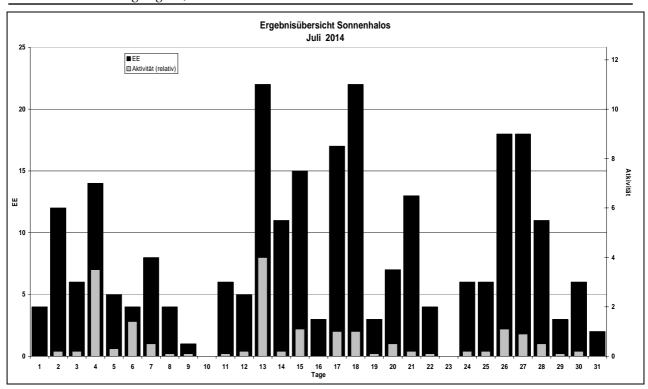
17.07.: Zirkumhorizontalbogen bei einer Sonnenhöhe von 61,7° in Bad Schönborn. Foto: Elmar Schmidt

17.07.: 22°-Ring, Umschriebener Halo und Horizontalkreis in Kämpfelbach. Fotos: Michael Großmann

17.07.: Sehr helle Nebensonnen sowie Untersonne mit Unternebensonne aus dem Flugzeug. Fotos: Andreas Zeiske

Zu Beginn der dritten Dekade verabschiedete sich Hoch AYMEN vor allem im Süden mit weiteren Horizontal- und Zirkumhorizontalbögen am 20. (KK53) und 24. (KK77) und machte anschließend Bodentief PAULA Platz, welches zum Monatsende zahlreiche Gewitter brachte.

24.07.: 22°-Ring, Umschriebener Halo und Horizontalkreis in Miesbach. Foto: Thomas Klein, Miesbach


24.07.: Zirkumhorizontalbogen vom Sarstein (1975m) im Dachsteingebirge, Österreich. Fotos (USM): Kevin Förster

]	Ве	ok	oa (ch	ıte	er	ük)e	rs	ic	h	t	Jι	ıli	2	01	4									
KKGG	1		3		5	il	7		9	i	11		13		15		17		19		21	2	3	25		27		29		31	٦ \	2.	2 \	4)
KKGG		2		4		6		8		10		12		14		16		18		20	:	22	24		26		28		30		Ι)	2)	3)	4)
5602				1	1	i	1			į										į			•		i		1		1		6	6	0	6
5702		2								:												1	1		:						4	3	0	3
7402					į	i i				į										- 1					:	2					2	1	0	1
0604			1	2	1			1		:		1	1		2			3	1		1	1	1		3	2	2				23	15	0	15
7504	2									į			1	1			6	2							ĺ	6	1				19	7	0	7
1305				1		1	1										1								:						4	4	0	4
2205			1				2			į				1			2			į		1			i						7	5	0	5
6906										:															3						3	1	0	1
6407	1	(ei	n H	alo	,	!				į																					0	0	0	0
0408	1 2 1 2 1 3 7 5 0 Kein Halo 0 0 0 0 1 2 1 1 1 6 5 0															5																		
3108		1				1				:			2		3					1				2	2	1		1			14	9	0	9
3808	1		3			х				:			5	3	3			6			2	Aus	land	-	<u> </u>	-	-	-	-	-	23	7	1	8
4608										į								1		1	1			1	1	1					6	6	0	6
5108	1				;) 	1			;					3			6		;	2	Aus	land	-	: -	-	-	-	-	-	13	5	0	5
5508				2	1					:			1		1										:	1					6	5	0	5
7708		1		3	1					ï	1	х	3		2					3	1		4			1					20	10	1	11
6110									1	:						1	1								:						3	3	0	3
6210				1		i I					1						4					1		1							8	5	0	5
7210				1			1			:		Kε	ein	е В	eob	ach	tur	ıg -		-					3						5	3	0	3
0311		1	1	1	1	2	1			į	1	Х	1	1	1			3		. :	3		1	2	1		1	1		1	24	18	2	19
4411										;			2												1						3	2	0	2
5317		1		2		i I	1	1		į	3	2	5	х		1				1			1		2	2		1	4		27	14	2	15
9524		3						2		:									2						:						7	3	0	3
9335		4								:		2		4		1	6			1	3				1		6		1	1	30	11	0	11
		1) =	E	E (So	nne	∋)	2	2)	=]	l'ag	e	(Sc	nn	e)		3)	= '	Гаç	ge	(Mor	ıd)	4	1)	= ']	'ag	е	(ge	saı	mt)			

]	Er	ge	b	ni	si	ib	er	`s:	ic	ht	: :	Ju	1 i	L :	20:	14	!							
EE																ges																
		2		4		6		8		10		12		14		16		18		20	:	22	:	24		26		28		30		
01		5	1	8	4	!	5	3	1		2	2	9	5	3	1	5	3	2	3	7	1		4	- [8	4	2	2	1		91
02	3	2	3	1		1		1			2	1	3	2	3	1	2	6		1	1				2	3	4	2		3	1	48
03	1	2	1	2		1					1	1	3	3	4	1	2	5		1	4	2			3	2	2	1		1	1	44
05						1							1			: :	1	2	1							2	2	2				12
06						:					! !					!	1				:				- 1							1
07				1	1		3				1	1	2	1	4	:	3	3			1	1		1	÷	1	4	2				30
08		1				! !										[! :			1	1		1		1			4
09						:										:					:				- 1							0
10						!] 					!					:				1							1
11		2	1			:							2		1		1	2		1	:				- 7	2	1	1		1		15
12				1		; !										[[- 1							1
	4		6		5		8		1		6		20		15	:	15		3		13		0		6		18		3		2	0.45
		12		13		3		4		0	l I	5		11		3		21		6	:	4		6	:	18		10		6		247

					E	rsch	ein	unge	n üb	er	EE 1	2					
TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG
02	21	9524	13	18	5508	17	13	6210	18	13	0604	24 24	13 23	7717	28	23	9335
04	23	7708	13	23	3108	17 17	21 23	9335 6210	20	23	5317	24	23	7717			
06	23	3108	14	13	9335	17 17	44 46	7507 7507									

KK	Name / Hauptbeobachtungsort	KK	Name / Hauptbeobachtungsort	KK	Name, Hauptbeobachtungsort	KK	Name, Hauptbeobachtungsort
03	Thomas Groß, München	38	Wolfgang Hinz, Schwarzenberg	56	Ludger Ihlendorf, Damme	72	Jürgen Krieg, Ettlingen
04	H. + B. Bretschneider, Schneeberg	44	Sirko Molau, Seysdorf	57	Dieter Klatt, Oldenburg	74	Reinhard Nitze, Barsinghausen
06	Andre Knöfel, Lindenberg	46	Roland Winkler, Schkeuditz	61	Günter Busch, Fichtenau	75	Andreas Zeiske, Woltersdorf
13	Peter Krämer, Bochum	51	Claudia Hinz, Schwarzenberg	62	Christoph Gerber, Heidelberg	77	Kevin Förster, Carlsfeld/Erzg.
22	Günter Röttler, Hagen	53	Karl Kaiser, A-Schlägl	64	Wetterwarte Neuhaus/Rennw.	93	Kevin Boyle, UK Stoke-on-Trent
31	Jürgen Götze, Adorf bei Chemnitz	55	Michael Dachsel, Chemnitz	69	Werner Krell, Wersau	95	Attila Kosa-Kiss, RO-Salonta

Interessante Beiträge aus den AKM-Foren im September 2014

von Kevin Förster, Carlsfelder Hauptstraße 80, 08309 Eibenstock OT Carlsfeld

Atmosphärisches aus Island (05.09.2014 von Wolfgang Hinz)

Während einer dreiwöchigen Reise durch Island konnten Claudia und Wolfgang Hinz jede Menge atmosphärische Erscheinungen beobachten und fotografieren. "Es hat einige Zeit gedauert um aus den 6500 Bildern […] die atmosphärischen Beobachtungen zu sichten und zu ordnen. Hier nun die interessantesten Bilder zu den atmosphärischen Erscheinungen."

Vollständiger 22°-Ring auf der Kjölurroute durchs Hochland (vorherige Seite links), schwacher 22°-Ring mit beiden Nebensonnen (vorherige Seite rechts),intensives Abendrot mit Wolkenstrahlen (oben links), riesige Föhnwolken im Abendrot über den Gletschern Eyjafjallajökull und Myrdalsjökull (oben rechts), Luftspiegelungen über den Sandflächen im Süden (oberes schmales Bild), Luftspiegelung an der Küste (unteres schmales Bild), Regenbogen am Myvatn-See (unten rechts). © Claudia und Wolfgang Hinz.

=> gesamter Beitrag: http://forum.meteoros.de/viewtopic.php?f=2&t=55028

Sonnenmakros (Verformung, Grüner- Blauer- Strahl und Linie) (17.09.2014 von Sven Aulenberg)

"Im Urlaub auf Rügen" hat Sven Aulenberg "seit langer Zeit mal wieder "Sonnenmakro" geschossen. Am Meer ist die Luft in Horizontnähe einfach sauberer als im Inland und die Chance auf ein paar nette Bilder nicht schlecht."

Claudia Hinz schrieb als Ergänzung: "Die grüne Linie müsste der Novaja Zemlja Effekt sein. Genial erwischt!"

Elmar Schmidt konnte "Den türkisen Blitz [...] nur einmal auf Hawai'i" sehen. Er wollte von Sven Aulenberg noch etwas zur Fototechnik wissen. Diese antwortete: "Die Fotos wurden mit einer DSLR gemacht. Das verwendete Objektiv ist ein altes Novoflex Schnellschussobjektiv mit 600mm Brennweite. Wegen des Cropfaktors der Kamera, hat man dann einen Bildauschnitt welcher einem 900mm Objektiv entspricht. Fokus und Blende ist natürlich nur manuell, auch die Kamera läuft dann im Modus M. Ausgelöst wurde manuell im Serienbild Modus. Da keine Daten von Objektiv zur Kamera übertragen werden, kann ich auch keine Angaben zur jeweiligen Blende machen, weil ich diese kontinuierlich beim Knipsen der Sonne verändere."

Eine "angezapfte" Sonne (oben links), "Der brasilianische Flash" (oben rechts), "Zum Schluss war er dann nur noch blau und hielt sich gut 2 Sekunden."(unten links), eine grüne Linie (unten rechts). © Sven Aulenberg.

=> gesamter Beitrag: http://forum.meteoros.de/viewtopic.php?f=2&t=55064


Halomator 3 (30.09.2014 von Michael Großmann)

Michael Großmann hat die Leidenschaft, "Dinge in der Atmosphäre nicht nur zu fotografieren, sondern auch mittels Modellen nachzustellen. Die "Sudelfeld-Veteranen" erinnern sich noch sicher an den Halomator 1 mit dem man immerhin zahlreiche Halos demonstrieren konnte. Darunter die Berührungsbögen, Parrybögen, Horizontalkreis, Sonnenbogen, Nebensonnen etc. Doch der 22° Ring, die Haloerscheinung die physikalisch gesehen an willkürlichen Säulenkristallen ohne jegliche Ordnung entstehen, macht da im praktischen Bereich "mächtig Ärger". Ich musste lange überlegen, wie ich eine Halterung konstruiere, um ein Säulen-Kristall um alle drei möglichen Achsen zu rotieren. So entstand damals im Jahr 2011 der Halomator 2."

Halomator 1 (links) und Halomator 2 (rechts). © Michael Großmann.

"Was mich allerdings ziemlich nervte, auch wenn es interessant aussah, waren die beiden Antriebsarten; zum einen der elektrische Antrieb und dazu noch zwei pneumatische Antriebe. Es musste also immer ein Kompressor oder aber ein befüllbarer Lufttank dabei sein. Das ist nicht immer gegeben! Also zerbrach ich mir wieder eine Weile den Kopf über einen rein elektrischen Antrieb, der meinen Kristall im Inneren über alle 3 Achsen in Bewegung versetzt. Die Geburtsstunde des Halomator 3!"

Michael Großmanns neuste Erfindung, der Halomator 3.
© Michael Großmann.

"So sieht er nun aus, es fehlt nur noch der passende (etwas kleinere) Kristall und dann wird es in Kürze die ersten Bilder geben der o.g. Haloarten. Ich hoffe, dass ich rechtzeitig zum Treffen fertig bin, um es dann vor Ort zu demonstrieren. Die ersten Testläufe sehen vielversprechend aus, nur noch etwas 'Feintuning'"

Viele Teilnehmer des kommenden Halotreffens freuen sich schon auf eine Live-Vorführung des Halomator 3. So

Andreas Zeiske, der sehr gespannt auf die neuste Erfindung ist. Auch Andreas Möller ist "auf November gespannt!" Und Claudia Hinz hofft, dass "zwischen all den Live-Eisnebelhalos noch genügend Zeit dafür" ist.

=> gesamter Beitrag: http://forum.meteoros.de/viewtopic.php?f=2&t=55100

35. AKM-Seminar vom 20.-22.03.2015 in Waren (Müritz)

Das 35. AKM-Seminar und die Mitgliederversammlung des Arbeitskreises Meteore e.V. finden vom

20. bis 22.03.2015 in der Jugendherberge Waren (Müritz) statt.

www.waren.jugendherberge.de

Als Unterkunft stehen folgende Zimmerkategorien zur Verfügung:

- Doppelzimmer mit Waschbecken im Zimmer und Bad auf dem Flur (65€)
- Doppelzimmer mit geteiltem Bad, je zwei Zimmer ein Bad (75€ begrenzte Anzahl)

Der Preis für die Unterkunft beinhaltet auch die **Tagungsgebühr** und gilt für zwei Übernachtungen incl. Bettwäsche und Vollverpflegung von Freitagabend bis Sonntagmittag sowie die Miete der Tagungsräume. Für eine Teilnahme ohne Übernachtung beträgt die Tagungsgebühr 20€.

Wir bitten um Überweisung der Tagungsgebühr im Voraus auf das Vereinskonto des AKM e.V.: AK Meteore, Berliner Volksbank Potsdam, Konto: 2355968009, BLZ 10090000 IBAN: DE29100900002355968009 BIC:BEVODEBB

Da am 20. März die partielle Sonnenfinsternis stattfindet, ist es möglich, optional einen Tag früher anzureisen, um diese von dort aus zu beobachten. Die Bedeckung beträgt in Waren (Müritz) ca. 75,5%.

Das **Programm** wird Beiträge aus allen Teilbereichen des AKM (Meteore, Feuerkugeln und Meteorite, Halos, Polarlichter, leuchtende Nachtwolken und anderen atmosphärischen Erscheinungen) beinhalten. Die Themen der angemeldeten Vorträge erscheinen auf der Webseite des AKM

http://www.meteoros.de/sonstiges/akm-seminare/akm-seminar-2015

Wir hoffen auf viele interessante Vorträge! Wer für seinen Vortrag absolute Dunkelheit benötigt (z.B. für Polarlichter), sollte uns dies mitteilen, da wir diese Vorträge auf den Abend legen.

Das beiliegende Anmeldeformular ist auch online verfügbar

www.meteoros.de/akm-seminar/2015/anmeldung.php

Anmeldungen bitte bis zum 17.01.2014 per Formular online oder mit Brief an

Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam zu schicken und dabei unbedingt angeben, ob die Anreise wegen der Sonnenfinsternis bereits einen Tag früher erfolgen soll!

Weitere Informationen folgen in einer der nächsten Ausgaben von METEOROS.

English summary

Visual meteor observations in August 2014:

eleven observers recorded data of 1112 meteors within 65.5 hours effective observing time (15 nights). The `best" night was August 12/13 when six observers noted 355 meteors (263 Perseids) within 17.1 hours. Enhancements of the kappa Cygnids (KCG) as calculated by Koseki have not been observed. A KCG fireball was catched on August 12.

Perseids 2014:

the maximum rates were below 80 and there is a wide gap between

3 and 20 h UT on August 13. Thus a higher peak within this period may have been missed by visual observers. One open question is to which accuracy the loss of faint meteors due to bright moonlight is corrected by the standard method because data of previous moonlit returns also yielded low peak ZHRs.

Hints for the visual meteor observer in November 2014:

activity of the two taurid branches can be observed during the entire month with a possible maximum of the NTA around Nov 12.

There are chances for small Leonid peaks on Nov 17 and Nov 21.

Video meteor observations in June 2014:

56 of the 78 cameras recorded data in at least 20 nights. During a total observing time of more than 6500 hours, more than 18500 meteors have been recorded. Analyses of the low activity of the June Bootids and the Antihelion source are presented. The video sample also includes a small number of the Daytime Artietids.

Halo observations in July 2014:

297 solar haloes on were observed on 29 days and nine lunar haloes on five days by 23 observers. The halo activity index of 17.6 was below the average for this month. There were no complex haloes but the circumhorizonthal arc was observed on six occasions.

Short summaries of contributions in the AKM forums - September:

observation of various atmospheric phenomena in Iceland, a distorted solar image with green and blue sections, `halomator 3' to simulate haloes of different types.

The 35th AKM-Seminar of the AKM is announced to take place in March 2015 in Waren.

Unser Titelbild...

... zeigt Polarlichter aus dem Erdorbit, aufgenommen vom ESA-Astronauten Alexander Gerst an Bord der Internationalen Raumstation.

© Foto: ESA/NASA

Impressum:

Die Zeitschrift *METEOROS* des Arbeitskreises Meteore e. V. (AKM) über Meteore, Leuchtende Nachtwolken, Halos, Polarlichter und andere atmosphärische Erscheinungen erscheint in der Regel monatlich. *METEOROS* entstand durch die Vereinigung der *Mitteilungen des Arbeitskreises Meteore* und der *Sternschnuppe* im Januar 1998.

Nachdruck nur mit Zustimmung der Redaktion und gegen Übersendung eines Belegexemplares.

Herausgeber: Arbeitskreis Meteore e. V. (AKM), c/o Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam

Redaktion: André Knöfel, Am Observatorium 2, 15848 Lindenberg

Meteorbeobachtung visuell: Jürgen Rendtel, Eschenweg 16, 14476 Marquardt Video-Meteorbeobachtung: Sirko Molau, Abenstalstraße 13 b, 84072 Seysdorf Beobachtungshinweise: Roland Winkler, Merseburger Straße 6, 04435 Schkeuditz

Feuerkugeln: Thomas Grau, Puschkinstr. 20, 16321 Bernau Halo-Teil: Wolfgang Hinz, Oswaldtalstr. 9, 08340 Schwarzenberg Meteor-Fotonetz: Jörg Strunk, Kneippstr. 14, 32049 Herford

EN-Kameranetz und Meteorite: Dieter Heinlein, Lilienstraße 3, 86156 Augsburg

Polarlichter: Ulrich Rieth, Rumpffsweg 37, 20537 Hamburg

Bezugspreis: Für Mitglieder des AKM ist 2014 der Bezug von METEOROS im Mitgliedsbeitrag enthalten.

Für den Jahrgang 2014 inkl. Versand für Nichtmitglieder des AKM 25,00 €. Überweisungen bitte mit der Angabe von Name und "Meteoros-Abo" an das Konto 2355968009 für den AK Meteore bei der Berliner Volksbank Potsdam, BLZ 10090000

(IBAN: DE29100900002355968009 BIC: BEVODEBB)

Anfragen zum Bezug an AKM, c/o Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam

oder per E-Mail an: Ina.Rendtel@meteoros.de