ISSN 1435-0424 Jahrgang 16

Nr. 2 / 2013 ETEOROS

Mitteilungsblatt des Arbeitskreises Meteore e. V. über Meteore, Meteorite, leuchtende Nachtwolken, Halos, Polarlichter und andere atmosphärische Erscheinungen

Aus dem Inhalt:	Seite
Visuelle Meteorbeobachtungen im Dezember 2012	36
Geminiden 2012	37
Visuelle Meteorbeobachtungen im Jahr 2012	38
Einsatzzeiten der Kameras im IMO Video Meteor Network, Dezember 2012	41
Hinweise für den visuellen Meteorbeobachter im März 2013	52
Die Halos im November 2012	52
Summary, Titelbild, Impressum	58

Visuelle Meteorbeobachtungen im Dezember 2012

Jürgen Rendtel, Eschenweg 16, 14476 Marquardt Juergen.Rendtel@meteoros.de

Der letzte Monat des Jahres ist zweifellos einer der spannendsten und lohnendsten. 2012 standen die mondfreien Geminiden im Mittelpunkt. Selbst die Ursiden waren hinsichtlich der Mondstörung noch leidlich beobachtbar. "Angereichert" wurde das Angebot durch mögliche Pisciden am 13. Dezember und ebenfalls berechnete Dezember φ -Cassiopeiden am Silvesterabend. Soweit das Programm.

Im Rückblick erscheint der Dezember 2012 in keiner Kategorie als erwähnenswerter Monat: Die Geminiden fanden fast ausschließlich oberhalb der geschlossenenen Wolkendecke statt, die Ursiden ebenso. Am 12./13. gab's Lücken im Süden, am 13./14. eher im Norden. Die errechneten (Zusatz-)Kandidaten verursachten keine erkennbare Aktivität. In beiden Fällen hätten Strommeteore auffallend langsame Meteore sein müssen. Es gab zwar einzelne Meteore, die das Richtungskriterium erfüllten, aber die Winkelgeschwindigkeit hätte in der Größenordnung einer Satelliten-Bewegung sein müssen . . .

Im Dezember 2012 notierten sieben Beobachter innerhalb von insgesamt 11.90 Stunden effektiver Beobachtungszeit, verteilt über fünf Nächte, Daten von insgesamt 373 Meteoren.

Beob	achter im Dezember 2012	$T_{\rm eff}$ [h]	Nächte	Meteore
ARLRA	Rainer Arlt, Ludwigsfelde	0.33	1	7
BADPI	Pierre Bader, Viernau	1.88	1	69
ENZFR	Frank Enzlein, Eiche	0.33	1	23
NATSV	Sven Näther, Wilhelmshorst	2.10	1	23
RENJU	Jürgen Rendtel, Marquardt	4.44	3	105
SCHKA	Kai Schultze, Berlin	0.20	1	6
WUSOL	Oliver Wusk, Berlin	0.33	1	11

Dt	T_{A}	$T_{\rm E}$	λ_{\odot}	$T_{ m eff}$	$m_{ m gr}$	\sum_{n}	GEM		öme/spor				SPO	Beob.	Ort	Meth./ Int.
Deze	ember 2	2012														
07	2200	0012	256.08	2.10	6.12	23	3	5	1	_	_	-	14	NATSV	11149	P
12	2042	2200	261.09	1.30	6.05	36	30	_	_	_	_	-	6	MOLSI	16070	C, 4
13	0100	0324	261.30	1.88	5.65	69	57	5	1	1	0	5	11	BADPI	16070	C, 6
13	0341	0500	261.38	1.32	5.77	69	66	_	_	_	_	_	3	MOLSI	16070	C, 8
13	1735	1755	261.96	0.33	5.80	5	2	0	1	/	/	/	3	RENJU	11152	$C(^1)$
13	1912	2112	262.06	2.00	5.95	72	51	4	1	/	/	/	16	RENJU	11152	$C, 8 (^2)$
13	2225	2245	262.16	0.33	6.09	23	20	-	_	_	_	-	3	ENZFR	11131	C, 2
14	0125	0145	262.29	0.33	5.80	11	11	-	_	_	_	-	0	WUSOL	11142	$C(^{3})$
14	0126	0145	262.29	0.32	5.77	7	7	-	_	_	_	-	0	ARLRA	11142	$C(^3)$
_14	0134	0146	262.29	0.20	5.14	6	6	-	_	_	_	-	0	SCHKA	11142	$C^{(4)}$
28	1021			Voll	mono	l										
30	1850	1950	279.33	1.00	5.98	9		2	1		0		11	RENJU	11152	С
31	1630	1737	280.25	1.11	5.92	16		2	1		/		12	RENJU	11152	C, 2

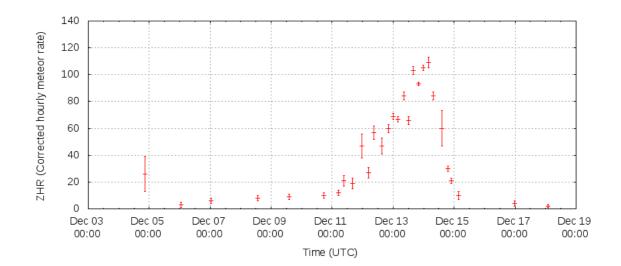
 $^(^1) c_F = 1.25$

Berücksichtigte Ströme:									
ANT	Antihelion-Quelle	25.1131.12.							
COM	Comae Bereniciden	12.1223.12.							
DLM	Dezember Leonis Minoriden	5.124.2.							
GEM	Geminiden	7.1217.12.							
HYD	σ -Hydriden	3.1215.12.							
MON	Monocerotiden	27.1117.12.							
QUA	Quadrantiden	28.1210. 1.							
URS	Ursiden	17.1226.12.							
SPO	Sporadisch (keinem Rad. zug	eordnet)							

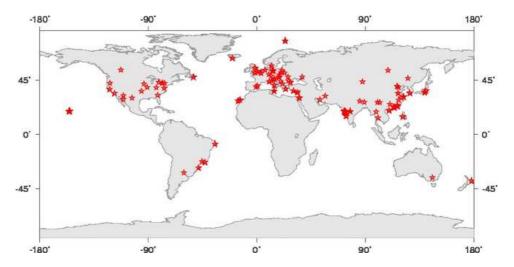
⁽²⁾ $c_F = 1.10 \ 1912 - 1930$; $c_F = 1.20 \ 2100 - 2112$; wolkenfrei 1930 - 2100

⁽³⁾ $c_F = 1.43$

 $[\]binom{4}{c_F} c_F = 2.00$


Beoba	Beobachtungsorte:							
11131	Tiefensee, Brandenburg (13°51′E; 52°40′N)							
11149	Wilhelmshorst, Brandenburg (13°4′E; 52°20′N)							
11152	Marquardt, Brandenburg (12°57′50″E; 52°27′34″N)							
11142	Fehrbellin, Brandenburg (12°53′E; 52°45′N)							
16070	Seysdorf, Bayern $(11^{\circ}43'E; 48^{\circ}33'N)$							
16152	Höchberg, Bayern (9°53′ E; 49°47′ N)							

Erklärungen zu den Daten in der Übersichtstabelle sind in Meteoros Nr. 10/2012, S. 220 zu finden.


Geminiden 2012

Jürgen Rendtel, Eschenweg 16, 14476 Marquardt Juergen.Rendtel@meteoros.de

Angesichts der astronomischen Gegebenheiten hätten die Geminiden gut mit den erfolgreich beobachteten Perseiden konkurrieren können. Angesichts der bereits im vorigen Beitrag beschriebenen Wetterbedingungen im Dezember 2012 blieb von den Erwartungen so gut wie nichts übrig.

Geminiden-ZHR-Profil 2012 aus den visuellen Beobachtungen der IMO Sofort-Analyse mit einem als konstant mit r=2.2 angenommenem Populationsindex.

Verteilung der Standorte der Geminiden-Beobachter im Dezember 2012.

Der hier dargestellte Überblick basiert auf weltweit 20591 zusammengetragenen Geminiden (1483 Intervalle) und einem als konstant zu r=2.2 angenommenen Populationsindex. Gerade bei den Geminiden ist eine auffällige Massensortierung bekannt, die dafür sorgt, dass der Wert von r im Bereich des ZHR-Anstieges höher ist als am Ende des hohen Aktivitätsprofiles. Das sollte die ZHR vor 261 °.5 (Dezember 13 vor 08h UT) eher anheben, während die um 262 °.2 (Dezember 14 um 02h UT) wahrscheinlich ziemlich genau den gezeigten Werten entsprechen könnten. Die Peak-ZHR bei 110 ist in der Größenordnung der Maxima der letzten Jahre und das Profil unterscheidet sich insgesamt nicht vom Mittel. Längerfristig ist nach den bisher entwickelten Modellen allderings schon mit Veränderungen zu rechnen, was die regelmässige Beobachtung dieses Stromes – von seiner verlässlich hohen Rate – natürlich besonders spannend macht.

Visuelle Meteorbeobachtungen im Jahr 2012

Jürgen Rendtel, Eschenweg 16, 14476 Marquardt Juergen.Rendtel@meteoros.de

Astronomisch gesehen war das zurückliegende eines der beobachtungsfreundlichen Jahre. Wie immer, fällt die Bilanz gemischt aus. Die Anzahl der Beobachtungsstunden lag 2012 über dem Durchschnitt der letzten zwölf Jahre, aber doch deutlich unter der 2011-er Summe. Die in den Vorjahren mehrfach von einzelnen Beobachtern erreichte "magische Marke" von 200 Beobachtungsstunden war 2012 deutlich außer Reichweite. Da spielte das Wetter nicht mit, wie in den Monatsberichten bereits beklagt wurde. In der Tabelle 1 finden wir diesmal zwölf Beobachter, die in mehr als neun Stunden Daten sammelten. Beinahe identische Beobachtungszeiten teilten Christoph und Pierre mit und auch die Beobachter der zweiten Tabellenhälfte waren nur wenig unterschiedlich im Einsatz.

	Beobachter	Stunden	Monate	Meteore
1	Jürgen Rendtel, Potsdam	156.29	12	2561
2	Sven Näther, Wilhelmshorst	110.27	12	1120
3	Christoph Gerber, Heidelberg	88.77	10	628
4	Pierre Bader, Würzburg	88.67	10	1334
5	Stefan Schmeissner, Kulmbach	42.39	6	439
6	Frank Enzlein, Eiche	15.52	4	380
7	Ulrich Sperberg, Salzwedel	12.70	1	324
8	Rainer Arlt, Ludwigsfelde	11.38	5	237
9	Christian Schmiel, Potsdam	11.24	4	240
10	Sirko Molau, Seysdorf	10.91	2	496
11	Ralf Koschack, Lendershagen	9.99	1	616
12	Oliver Wusk, Berlin	9.82	3	249

Tabelle 1: Aktive Meteorbeobachter 2012 mit $T_{\rm eff} \geq 9h$

Die Monate Februar, November und Dezember waren nicht nur gefühlt "schlecht", sondern fielen auch durch unterdurchschnittliche Beobachtungsmöglichkeiten auf. Dafür bot der August nach mehreren unerfreulichen Jahren wieder einen besseren Blick auf die Perseiden. Entsprechend ragt das Ergebnis aus dem Jahresüberblick heraus. Bemerkenswert ist auch, dass der März 2012 bis auf drei Stunden an das Rekordergebnis des Vorjahres herankam.

22 Beobachter waren 2012 aktiv gegenüber 27 im Jahr davor; 606 Beobachtungsstunden kamen zusammen – fast 240 weniger als 2011. Dennoch stehen – hauptsächlich dank der Perseiden – Daten von 9307 Meteoren im Buch und somit mehr als 2011. Kaum überraschend, dass **die** hervorzuhebenden Nächte des Jahres 2012 vom August stammen: 11./12. (17 Beobachter) und 12./13. August (15 Beobachter)

	r			1	
	Beobachter	Stunden	Meteore	Stunden	Meteore
Januar	10	29.91	420	29	554
Februar	3	12.27	58	22	130
März	5	65.61	305	42	265
April	13	51.05	514	85	748
Mai	4	34.81	237	65	510
Juni	5	44.20	465	33	209
$_{ m Juli}$	5	43.42	469	55	621
August	19	173.47	4758	96	2076
September	5	64.07	715	58	669
Oktober	9	57.73	793	82	1367
November	3	17.74	200	42	645
Dezember	7	11.90	373	40	626
Jahr	22	606.18	9307	647	8314

Tabelle 2: Meteorbeobachtungen in den einzelnen Monaten 2012 und Mittel 2007–2011 (rechte Spalten)

Damit sind wir beim Blick auf die einzelnen Ströme angelangt. In der Tabelle 3 sind die 2012 beobachteten Meteoranzahlen der verschiedenen Ströme zusammengestellt.

Die eher wenigen, aber in jeder Nacht sichtbaren sporadischen Meteore liefern wie immer in der Jahressumme den größten Anteil. Diesmal lagen die Perseiden beinahe gleichauf, auch wenn sie nur innerhalb etwa eines Monats beobachtet werden können und noch eine Vollmondperiode darin vorkommt.

Überraschend ist dann doch eher, dass die eigentlich nur in einer Nacht nennenswert aktiven Quadrantiden mit den "größeren" Geminiden nicht nur "mithalten" konnten. Die 2011 mit 11% den größten Strom-Beitrag liefernden Draconiden treten 2012 trotz kurzer Aktivität nicht in Erscheinung. Die anderen attraktiven Ströme, wie Orioniden, Lyriden, Leoniden und Ursiden, konnten nicht zusammenhängend verfolgt werden und erscheinen so in der Liste weiter unten. Wie bei den sporadischen Meteoren ist die Summe der registrierten Meteore aus dem ekliptikalen Komplex (Antihelion-Region und Tauriden) aufgrund der langen Aktivitätsdauer relativ hoch – auch wenn der Anteil unter dem 2011-er liegt.

Strom bzw. Quelle	zugeord	nete Meteore	Vergleich mit 2011
sporadisch	3480	37%	4384 (47%)
Perseiden	3333	36%	333 (4%)
Antihelion	635	4%	641 (7%)
Tauriden (N+S)	264	3%	441 (5%)
Quadrantiden	257	3%	80
Geminiden	253	3%	360 (4%)
Orioniden	240	3%	614 (7%)
Lyriden	168	2%	302 (3%)
Südl. δ -Aquariiden	134	1%	,
Sept. ε -Perseiden	103		35
Draconiden	15		1011 (11%)
Leoniden	50	1%	121 (1%)
Ursiden	0		4

 $Tabelle\ 3:\ Be obachtete\ Strommeteore\ im\ Jahr\ 2012$

Am Schluss folgt in alter Tradition die fortgeschriebene "ewige AKM-Tabelle" untyer Berücksichtigung aller bis zum 26. Februar 2012 eingegangenen Berichte. Wie bereits im Vorjahr als Bemerkung eingefügt, sind die Positionen 3 bis 5 seit Jahren unverändert. Da André und Ralf 2012 Beobachtungsberichte beisteuerten, ist auch hier etwas "Bewegung" zu verzeichnen. Die top ten sind zwar unter sich geblieben, haben aber teilweise die Reihenfolge getauscht. Inzwischen haben fünf Beobachter mehr als die Hälfte des Weges zum "Tausender-Klub" zurückgelegt.

	Beobachter	Stunden	BeobJahre		Beobachter	Stunden	BeobJahre
1	Jürgen Rendtel	6239.10	37	15	Ulrich Sperberg	432.62	25
2	Sven Näther	2328.17	19	16	Sabine Wächter	422.73	23
3	André Knöfel	1493.97	30	17	$Sirko\ Molau$	403.67	20
4	Ina Rendtel	1465.34	23	20	Oliver Wusk	370.68	10
5	$Ralf\ Koschack$	1459.59	22	22	Frank Enzlein	327.83	14
6	Pierre Bader	1359.97	25	37	Mario Kadlčik	142.92	4
7	$Rainer\ Arlt$	1351.72	28	63	$Stefan\ Schmeissner$	66.87	1
8	Ralf Kuschnik	664.57	24	71	Frank Wächter	55.80	20
9	Christoph Gerber	664.03	14	99	Christian Schmiel	25.32	3
10	Roland Winkler	658.48	23	104	Stela Arlt	22.76	6
				116	$Kai\ Schultze$	15.99	2
				157	$Ralf\ Neumann$	5.89	1
				168	Clara Ricken	3.10	1
				170	$Claudia\ Marka$	2.61	1

Tabelle 4: Meteorbeobachter-Gesamtbilanz seit Bestehen des AKM. Die Zahl in der ersten Spalte gibt die Position in der Gesamttabelle an.

Kursiv gesetzt sind in dieser Tabelle die Angaben von Beobachtern, die im Jahr 2012 Beobachtungsberichte einsandten. Die ersten zehn Zeilen sind der komplette Auszug aus der Gesamttabelle, darunter sind alle eingetragen, die 2012 aktiv waren.

Angesichts der vielen Beobachtungsjahre, die sich hinter den Zahlen der Tabelle 4 verbergen, treten gerade im oberen Bereich keine merklichen Veränderungen auf. Zuletzt kam Christoph im Jahr 2011 unter die ersten Zehn. Daher folgen nach den Gesamtzeiten seit der Gründung des AKM Ende der 70-er Jahre nun noch in der Tabelle 5 die Bilanzen der letzten fünf Jahre. (Die Zahlen in Klammern beziehen sich auf die Positionen in der kompletten Tabelle 4.)

		Beobachter, Ort	Summe $T_{\rm eff}$ (h)	Meteore
1	(1)	Jürgen Rendtel, Marquardt	965.4	15076
2	(2)	Sven Näther, Wilhelmshorst	827.2	7753
3	(7)	Pierre Bader, Viernau	528.2	6809
4	(9)	Christoph Gerber, Heidelberg	264.8	1587
5	(46)	Sergei Schmalz, Wiesbaden	99.6	502
6	(63)	Stefan Schmeissner, Kulmbach	66.9	582
7	(22)	Frank Enzlein, Eiche	52.1	1175
8	(10)	Roland Winkler, Markkleeberg	50.2	704
9	(17)	Sirko Molau, Seysdorf	47.0	1408
10	(6)	Rainer Arlt, Ludwigsfelde	40.7	854
11	(15)	Ulrich Sperberg, Salzwedel	36.1	789
12	(20)	Oliver Wusk, Berlin	36.0	769
13	(99)	Christian Schmiel, Potsdam	25.3	582
14	(16)	Sabine Wächter, Radebeul	23.7	292
15	(104)	Stela Arlt, Ludwigsfelde	18.7	602
16	(116)	Kai Schultze, Berlin	16.0	448
17	(131)	Stanislav Scholtz, Kulmbach	12.5	188
18	(132)	Jens Briesemeister, Magdeburg	10.3	227
19	(5)	Ralf Koschack, Lendershagen	10.0	616

Tabelle 5: Visuelle Meteorbeobachter 2008 – 2012; ab 10 Stunden Einsatz

In der Fünfjahrestabelle sind die "Plätze" leichter verschiebbar als in der Tabelle 4. Die komplette Liste aller Beobachter, die jemals dem AKM Daten zugeschickt haben, umfasst zurzeit 176 Eintragungen.

Zwar bietet 2013 mehr mondbeleuchtete Strom-Maxima als 2012 – da aber oft genug das gute Wetter nicht gerade um Neumond aufzutreten scheint, gibt es durchaus Chancen auf gute und hoffentlich auch spannende Beobachtungen und somit auch Anlass, die vielen Tabellen in einem Jahr anders aussehen zu lassen.

Einsatzzeiten der Kameras im IMO Video Meteor Network, Dezember 2012

von Sirko Molau, Abenstalstr. 13b, 84072 Seysdorf
Sirko.Molau@meteoros.de

Das Jahr 2012 verabschiedete sich mit mittelprächtigem Wetter. In der ersten Monatshälfte und ab Weihnachten herrschten verhältnismäßige gute Beobachtungsbedingungen – dazwischen gab es aber eine größere Pause, in der nur wenige Beobachtungen gelangen. Nur 15 der insgesamt 73 Kameras kamen auf zwanzig und mehr Beobachtungsnächte. Da das Wetter aber auch im vergangenen Dezember nicht gerade perfekt war, konnten wir mit gut 6.800 etwa 10% mehr Beobachtungsstunden verzeichnen als im Vorjahr. Die Zahl der aufgezeichneten Meteore stieg im Dezember sogar um 20% auf fast 40.000.

Mit Péter Bánfalvi hat ein neuer Videobeobachter in Ungarn zu uns gefunden. Nun betreiben er, Szilárd Csizmadia und Zoltán Zelko jeweils eine der HUVCSE Videokameras, die in einer multi-station-Konfiguration angeordnet sind.

Für die Meteorzahl ist im Dezember vor allem eines entscheidend – das Wetter zu den Geminiden. Beobachter, die um den 13. Dezember herum klaren Himmel haben, können ihre Ausbeute zum Jahresende noch einmal deutlich steigern. So konnten auch in diesem Jahr allein in der Nacht vom 12. zum 13. Dezember 8.000 Meteore aufgezeichnet werden. Nimmt man die beiden angrenzenden Nächte dazu, waren es sogar 15.000 Meteore. Das lag unter anderem daran, dass das Maximum der Geminiden genau in die Neumondzeit fiel. Aber auch das Wetter war recht kooperativ, so dass die meisten Beobachter wenigstens am 12./13. oder 13./14. Dezember beobachten konnten. Die 691 Meteore, die Erno Berkó mit HU-LUD1 aufzeichnete, sind absolut ungeschlagen, aber auch mehrere andere Beobachter konnten über 400 Meteore in einer Nacht erhaschen. Für Maciej Maciejewski, zum Beispiel, brachten die Geminiden 2012 mit Abstand mehr Meteore, als er jemals zuvor mit seinen Kameras in einer Nacht aufzeichnen konnte.

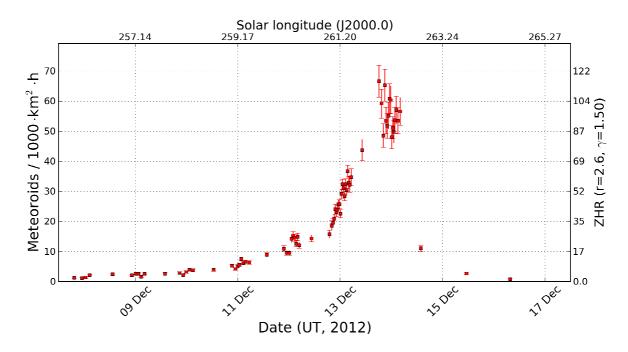
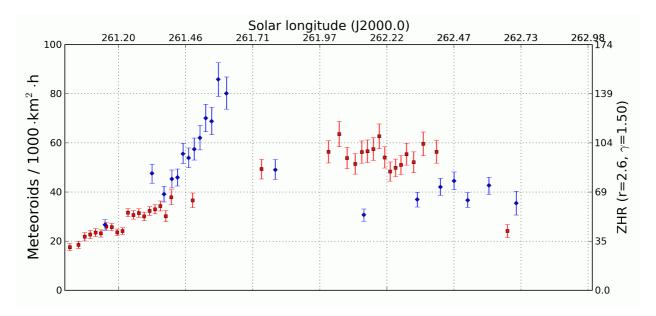



Abbildung 1: Flussdichteprofil der Geminiden aus Daten des IMO Network 2012.

Abbildung 1 zeigt das Aktivitätsprofil der Geminiden in Überblick. Bis zu einer Sonnenlänge von 261° war der Anstieg moderat. Dann ging es mit den Raten am 12./13. Dezember steil bergauf. Am 13./14. Dezember war die Flussdichte sogar noch höher und erreichte Maximalwerte von etwa 60 Meteoroiden pro 1.000 km² und Stunde. Das ist ein Tick mehr als zum Perseidenmaximum 2012. Bereits eine Nacht

später war die Rate um einen Faktor sechs gefallen und eine weitere Nacht darauf hoben sich die Geminiden kaum noch vom sporadischen Hintergrund ab.

In Abbildung 2 wird das Geminidenmaximum zwischen 261 und 263° Sonnenlänge genauer unter die Lupe genommen, wobei auch die Daten von 2011 dargestellt werden. Auch hier ergibt sich ein konsistentes Gesamtbild, wobei man vermuten kann, dass der Anstieg der Rate am 12./13. Dezember diesen Jahres erst der Anfang war, der sich zu späteren Sonnenlängen fortgesetzt haben könnte. Das Sonnenlängenintervall mit den möglicher Weise höchsten Raten fehlt in beiden Jahren.

Abbildung 2: Aktivitätsprofil vom Geminidenmaximum im Detail, wobei Daten von 2011 (Rhomben) und 2012 (Quadrate) dargestellt werden.

In der IMO Videometeordatenbank sind die Geminiden (4 GEM) mit 36.000 Meteoren bis Ende 2011 der drittstärkste Meteorstrom. Bedenkt man jedoch, dass sich die Aktivität der noch häufiger vertretenen Perseiden und Orioniden über einen weitaus längeren Zeitraum erstreckt, dann gibt es keinen Strom mit mehr Meteoren in einem Grad Sonnenlänge als die Geminiden.

Abbildung 1 zeigt, dass der wirklich aktive Abschnitt der Geminiden keine drei Tage dauert – daher war es interessant zu sehen, wie lange sich der Strom in der Langzeitanalyse vom Frühjahr 2012 vom sporadischen Hintergrund abhebt. Die Antwort ist in Tabelle 1 zu finden: Vom 30. November bis zum 17. Dezember kann der Geminidenradiant sicher detektiert werden. Erwartungsgemäß sind die Stromparameter aufgrund der hohen Meteorzahl sehr präzise, so dass es nur geringfügige Abweichungen zu den MDC Listenwerten gibt.

Tabelle 1: Parameter der Geminiden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Quelle	Sonnenlänge		Rektaszension		Deklii	nation	$\mathbf{V}_{ ext{inf}}$	
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]
MDC	262,1	-	113,2	+1,02	+32,5	-0,15	36,3	-
IMO 2012	261,5	248-265	113,3	+1,07	+32,4	-0,09	35,5	0

Mikhail Maslov hatte etwa um die Zeit der Geminiden 2012 einen möglichen Meteorstrom durch den Kometen 46P/Wirtanen (der ursprünglich als Ziel der Rosetta-Mission vorgesehen war) vorhergesagt, verursacht durch vier Dust Trails aus den Jahren 1927 bis 1947. Die Analyse unserer Daten ergab jedoch über alle Kameras summiert pro Nacht gerade einmal um die fünf mögliche Strommitglieder. Bei mehre-


ren hundert sporadischen Meteoren im gleichen Zeitraum sind das nur zufällige Treffer, so dass keine messbare Aktivität verzeichnet werden konnte.

Für den frühen Silvesterabend (31.12., 16:10 UT) hatte Jeremie Vaubaillon einen möglichen Ausbruch der Dezember phi-Cassiopeiden (446 DPC) vorhergesagt, verursacht durch einen nahen Vorbeigang am Dust Trail von 1969. Mehrere Beobachter berichteten gleich nach dem Ereignis, dass sie visuell bestenfalls vereinzelte Strommitglieder sichten konnten.

Eine Analyse unserer Videodaten sollte diesen Negativbefund nun untermauern, war jedoch komplizierter als zunächst vermutet. Die Frage war: Wo sollte sich der Radiant befinden? Die IMCCE Webseite von Jeremie und anderen verwies auf die MDC Liste. Dort ist der Strom mit α =19,8°, δ =58,0° und v_{inf} =19,8 km/s gelistet, aber für eine Sonnenlänge von 252° (d.h. Anfang Dezember) und ohne Angabe der Radiantendrift. Unsere eigene Analyse vom Oktober 2012 hatte den Strom ebenfalls nur Anfang Dezember detektiert, aber mit einer hohen Driftrate von 1,7° pro Tag in Deklination. Hätte man diesen Wert zugrunde gelegt, wäre der Radiant am Silversterabend bei einer Deklination von 104° gewesen, was auch nur wenig glaubwürdig erscheint. Außerdem gab es Verwirrung um den vorhergesagten Zeitpunkt des Outbursts, gibt doch die Webseite vom IMCCE neben der genannten Uhrzeit eine Sonnenlänge von 279,4584 Grad an, was dem 30. Dezember 2012, 22:17 UT entspricht.

Unter diesen Bedingungen haben wir eine Radiantensuche in den Sonnenlängenintervallen $280,0-280,4^{\circ}$ (entspricht dem Silversterabend mit 119 Meteoren) und zwischen $279,25-279,65^{\circ}$ (entspricht dem Abend zuvor mit 456 Meteoren) gestartet. Hierbei fand sich kein deutlicher Radiant in der erwarteten Gegend. Beim ersten Test ergaben 4 der 119 Meteore einen Radianten bei α =46,7°, δ = 66°, v_{inf} =20 km/s, der zweite Test ergab überhaupt keinen halbwegs ähnlichen Radianten. Komplett ausschließen lässt sich das Auftreten der Dezember phi-Cassiopeiden damit nicht, aber wirklich auffällig war der Strom Ende Dezember 2012 auf keinen Fall.

Schließlich zeigt sich auch bei den Ursiden sehr schön der Unterschied zwischen einem Jahr mit erhöhter Aktivität wie 2011 und einem "normalen" Jahr wie 2012. Während die Flussdichte im vergangenen Jahr immerhin Werte bis zu fünfzehn Meteoroiden pro 1.000 km² und Stunde erreicht hatte, betrug der Wert in diesem Jahr zur gleichen Sonnenlänge nur etwa vier.

Abbildung 3: Aktivitätsprofil der Ursiden aus Daten der IMO Netzwerks von 2011 (Rhomben) und 2012 (Quadrate).

Die Langfristauswertung der Ursiden (15 URS) basiert auf gut 1.700 Meteoren. Sicher erkannt werden kann der Strom zwischen dem 18. und 24. Dezember - kurz vor Weihnachten stellt er die stärkste Quelle am Himmel dar. Auch bei diesem Strom ist die Übereinstimmung zwischen unseren Daten und der Stromparameters des MDC sehr gut (Tabelle 2).

Tabelle 2: Parameter der	Ursiden aus der MDC	Working List und der	Analyse des IMO Net	zwerks 2012.
---------------------------------	---------------------	----------------------	---------------------	--------------

Quelle	Sonno	enlänge	Rektaszension		Deklination		$ m V_{inf}$	
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]
MDC	271	-	219,4	-	+75,3	ı	34,8	-
IMO 2012	270,5	266-272	218,1	+1,8	+75,1	-0,3	32,0	-

Der Dezember ist im Übrigen reich an kleinen Meteorströmen. Da wären zu Beispiel die psi-Ursae-Majoriden (339 PSU). Unsere Stromparameter in Tabelle 3 sind aus 1.300 Meteoren abgeleitet. Obwohl der Strom nur im Maximum einen Rang von vier hat, an den Grenzen des Aktivitätsintervall jedoch von über zwanzig, kann er zwischen dem 1. und 16. Dezember erstaunlich sicher erkannt werden. Die Streuung in den Stromparameters ist relativ gering und das Aktivitätsprofil mit einem Maximum am 4. Dezember gut ausgeprägt. Die Übereinstimmung mit den MDC-Listenwerten ist geradezu verblüffend – die Abweichung beträgt weniger als ein halbes Grad!

Tabelle 3: Parameter der psi-Ursae-Majoriden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Quelle	Sonne	enlänge	Rektaszension		Deklination		$ m V_{inf}$	
	Mittlere	Intervall [°]	Mittlere	Drift [°]	Mittlere	Drift [°]	Mittlere [km/s]	Drift [km/s]
MDC	253	-	167,8	-	+44,5	-	61,7	-
IMO 2012	252	249-264	169,0	+1,1	+43,7	-0,5	61,5	-

Nicht ganz so komfortabel ist die Lage bei den Dezember alpha-Draconiden (334 DAD), die in unserer Datenbank mit 1.400 Meteoren zwischen dem 5. und 18. Dezember vertreten sind. Der Strom erreicht für mehrere Tage einen Rang von etwa acht und zeigt im gesamten Aktivitätszeit ein merkliche Streuung in den einzelnen Meteorstromparameters. Erneut ist die Übereinstimmung unserer Meteorstromparameter (Tabelle 4) mit den Listenwerten des MDC exzellent, wenn man die Sonnenlängendifferenz in Betracht zieht.

Tabelle 4: Parameter der Dezember alpha-Draconiden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Quelle	Sonno	enlänge	Rektaszension		Deklination		$ m V_{inf}$	
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]
MDC	257	-	207,9	-	+60,6	-	43,1	-
IMO 2012	255	253-266	205,1	+0,8	+60,1	-0,3	42,8	-

Kurz davor – zwischen dem 2. und 6. Dezember - können die Dezember kappa-Draconiden (336 DKD) nachgewiesen werden. Unsere in Tabelle 5 angegebenen Stromparameter sind aus knapp 700 Meteoren abgeleitet. Der Strom ist zwar nur wenige Tage aktiv, stellt aber zeitweise die zweitstärkste Quelle am Himmel dar. Die Parameter streuen im kurzen Aktivitätsintervall nur gering und die Übereinstimmung mit den MDC-Daten ist auch in diesem Fall sehr gut.

INIO IVEIZWEIN	13 ZU1Z.							
Quelle	Sonnenlänge		Rektaszension		Deklination		$ m V_{inf}$	
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]
MDC	250	-	186,0	-	+70,1	1	44,8	ı
IMO 2012	251	250 254	195.4	.1.2	170.4	0.8	42.0	

Tabelle 5: Parameter der Dezember kappa-Draconiden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Die Dezember Comae-Bereniciden (20 COM) werden in unseren Daten gleich doppelt gefunden – oder vielleicht sollten wir besser sagen: Wir haben zwei Meteorströme gefunden, die Ähnlichkeit zu den Comae-Bereniciden aufweisen.

Der erste Strom kann zwischen dem 6. Dezember und 18. Januar mit nur minimaler Streuung in den Stromparametern sicher detektiert werden. Das gut ausgeprägte, leicht asymmetrische Aktivitätsprofil (steilerer Anstieg als Abfall) zeigt sein Maximum zwischen dem 17. und 22. Dezember und der Strom ist mit nur kurzer Unterbrechung zu den Ursiden von Mitte bis Ende Dezember die stärkste Quelle am Himmel. Fast 7.000 Meteore unserer Datenbank konnten diesem Strom zugeordnet werden. Die mittleren Parameter sind in Tabelle 6 aufgelistet.

Der zweite Strom ist parallel dazu zwischen dem 24. Dezember und 4. Januar aktiv. Auch er erzielt einen Rang von drei bis vier, wobei die von uns ermittelten Stromparameter auf über 1.000 Meteoren beruhen. Die Streuung in den Parametern ist etwas größer und das Aktivitätsprofil zeigt einen kleinen Peak zu Neujahr.

Vergleicht man nun diese beiden Ströme mit den Listenwerten des MDC zeigt sich, dass keiner von beiden so richtig zu den Vorgaben passt. Der erste Strom passt von der Geschwindigkeit her, weicht aber in der Position um mehr als zehn Grad ab. Beim zweiten Strom beträgt die Positionsabweichung nur etwa fünf Grad - dafür ist die Geschwindigkeit merklich höher.

Bei genauerem Hinsehen stellt man fest, dass in der MDC-Liste ein Strom fehlt, der früher aufgelistet war: Die Dezember Leonids-Minoriden (32 DLM) wurden entfernt, da es sich angeblich um denselben Strom wie die Dezember Comae-Bereniciden handelt. Blickt man jedoch auf Tabelle 6 so stellt man fest, dass die Leonids Minoriden deutlich besser zur unserem erstgenannten Strom passen. Berücksichtigt man die Differenz in Sonnenlänge, ergibt sich eine perfekte Übereinstimmung in Position und Geschwindigkeit. Es deckt sich mit den Erkenntnissen aus unserer Analyse von 2009, daß die Dezember Leonis-Minoriden der eigentlich dominante und über anderthalb Monate aktive Meteorstrom sind, während die Dezember Comae-Bereniciden eher zu einem kleineren zweiten Strom am Jahresende passen.

Tabelle 6: Parameter der Dezember Coma-Bereniciden und der Dezember Leonids-Minoriden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Quelle	Sonne	enlänge	Rektas	zension	Dekli	nation	V_{ii}	nf
	Mittlere [°]	Intervall [°]	Mittlere [°]	Drift [°]	Mittlere [°]	Drift [°]	Mittlere [km/s]	Drift [km/s]
MDC/DLM	262		156,1		+32,7		63,3	
MDC/COM	274	-	175,2	-	+22,2	-	64,7	-
IMO 2012	269	254-298	162,5	+0,88	+30,0	-0,43	64,1	0
11010 2012	280	272-283	185,7	+1,3	+11,7	-0,7	70,6	0

Die Erkennung der rho-Leoniden (442 RLE) in unseren Daten ist grenzwertig. Der Strom wird zwischen dem 5. und 11. Dezember mit gut 600 Strommitgliedern erkannt. Er hat zu keinem Zeitpunkt einen Rang unter zehn und zeigt auch kein klares Aktivitätsprofil. Trotzdem ist die Streuung der Stromparameter noch im akzeptablen Bereich.

Bei diesem Strom ist die Abweichung unserer Daten zu den MDC-Werten (Tabelle 7) so hoch, dass man sich fragen muss, ob hier wirklich derselbe Meteorstrom gemeint ist.

2012.									
Quelle	Sonnenlänge		Rektas	Rektaszension		Deklination		$\mathbf{V}_{ ext{inf}}$	
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift	
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]	
MDC	262	-	155,6	ı	+5,2	-	66,5	-	
IMO 2012	256	253-259	152.5	+0.1	-5.6	-1.3	68.7	_	

Tabelle 7: Parameter der rho-Leoniden aus der MDC Working List und der Analyse des IMO Netzwerks 2012

Auch die nördlichen und südlichen chi-Orioniden lassen sich in den IMO Videodaten detektieren. Der nördliche Zweig (256 ORN) ist zwischen dem 8. und 15. Dezember mit über 1.200 Meteoren vertreten. Der Rang beträgt sieben bis acht und die Streuung ist mittelmäßig. Die Übereinstimmung mit den MDC Werten wiederum ist recht gut (Tabelle 8).

Tabelle 8: Parameter der nördlichen chi-Orioniden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Quelle	Sonne	enlänge	Rektaszension		Deklination		$ m V_{inf}$	
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]
MDC	257	-	83,9	-	+25,5	-	27,3	-
IMO 2012	257	256-263	82,8	+0,8	+25,6	+0,2	26,3	-

Nicht ganz so komfortabel ist die Situation bei der südlichen Komponente (257 ORS), die zwischen dem 13. und 19. Dezember mit etwa 600 Meteoren erkannt wird. Ihr Rang bleibt im gesamten Zeitraum über zehn und die Streuung in den Parametern ist etwas größer. Unsere Stromparameter passen auch deutlich schlechter zu den MDC-Listenwerten (Tabelle 9).

Tabelle 9: Parameter der südlichen chi-Orioniden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Quelle	Sonne	enlänge	Rektas	zension	Deklii	nation	V_{ii}	ıf
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]
MDC	260	-	78,7	-	+15,7	-	24,2	-
IMO 2012	263	261-267	75,1	-0,2	+18,0	-1,8	21,4	=.

Besser steht es um die Dezember sigma-Virginiden (428 DSV), die in unserer Datenbank mit 1.200 Meteoren zwischen dem 17. und 31. Dezember vertreten sind. Vielleicht reicht ihre Aktivität sogar noch bis zu den Quadrantiden, aber diese Intervalle haben wir aufgrund größerer Streuung weggelassen.

Die sigma-Virginiden haben zwar kein klar ausgeprägtes Aktivitätsprofil, erreichen aber in der Weihnachtszeit einen Rang von vier bis fünf. Die Parameter des Stroms, die bis auf die Geschwindigkeit sehr gut mit den MDC Werten übereinstimmen, sind in Tabelle 10 angegeben.

Tabelle 10: Parameter der Dezember sigma-Virginiden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Quelle	Sonno	enlänge	Rektaszension		Deklination		$ m V_{inf}$	
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]
MDC	267	-	205,1	-	+5,5	-	66,9	-
IMO 2012	272	265-279	208,7	+0,8	+4,0	-0,2	69,4	-

Die alpha-Hydriden (331 AHY) können in unseren Daten mit über 700 Meteoren zwischen dem 22. Dezember und 8. Januar identifiziert werden. Die höchste Aktivität wird zu Neujahr erreicht, wo der Strom einen Rang von fünf erzielt. Die Streuung in den Parametern ist mittelmäßig. Tabelle 11 zeigt, dass unsere Stromparameter unter Berücksichtigung der Differenz in Sonnenlänge gut mit den MDC-Werten übereinstimmen.

Weiz, Werks 201	2.							
Quelle	Sonnenlänge		länge Rektaszension		Deklination		$ m V_{inf}$	
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]
MDC	286	-	127,6	1	-7.9	-	45,0	-
IMO 2012	280	270-288	125,0	+0,7	-7,4	-0,2	44,4	-

Tabelle 11: Parameter der alpha-Hydriden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Auch im Dezember gab es schließlich wieder einen Strom mit 900 Mitglieder zwischen dem 8. und 24. Dezember, der als unbekannt deklariert wurden. Zum Maximum am 17. Dezember wird ein Rang von fünf erzielt, ansonsten ist der Rang fast die ganze Zeit über zehn. Trotzdem weisen die Stromparameter eine nur geringfügige Streuung auf, so dass es unwahrscheinlich schien, dass dieser Strom tatsächlich noch unbekannt ist. Ein Abgleich mit der aktuellen MDC-Liste förderte prompt die Dezember chi-Virginiden (335 XVI) zutage, die gut zu unseren Werten passen.

Tabelle 12: Parameter der Dezember chi-Virginiden aus der MDC Working List und der Analyse des IMO Netzwerks 2012.

Quelle	Sonne	enlänge	Rektas	zension	Deklii	nation	V_{ii}	ıf
	Mittlere	Intervall	Mittlere	Drift	Mittlere	Drift	Mittlere	Drift
	[°]	[°]	[°]	[°]	[°]	[°]	[km/s]	[km/s]
MDC	256,7	-	186,8	+0,2	-7.9	-0,14	68,7	-
IMO 2012	265	256-272	192,8	+0,7	-11,2	-0,3	70,1	-

Kommen wir abschließend zum obligatorischen Jahresrückblick für 2012. Es war nicht nur EIN erfolgreiches, sondern wie auch in den vergangenen Jahres DAS erfolgreichste Jahr für die Beobachter im IMO Video Meteor Network. Insgesamt beteiligten sich 46 Beobachter mit 80 Videosystemen am Kameranetz – beide Zahlen sind unverändert zum Vorjahr. Die deutschen und die ungarischen Beobachter lagen mit je 17 Kamerasystemen gleich auf, mit etwas Abstand folgten Italien und Slowenien (je 11). Weitere Kameras waren in Portugal (7), Polen, Spanien und Belgien (je 3), Tschechien (2), sowie Australien, den Niederlanden, Griechenland, Finnland, Frankreich und den USA (je 1) stationiert.

Tabelle 13: Monatliche Verteilung der Videobeobachtungen im IMO Kameranetzwerk 2012.

Monat	# Beobachtungs- nächte	Eff. Beobachtungs- zeit [h]	# Meteore	Meteore / Stunde
Januar	31	9.778,8	29.885	3,1
Februar	29	7.764,7	16.330	2,1
März	31	9.711,0	18.992	2,0
April	30	5.683,7	12.838	2,3
Mai	31	6.076,7	15.127	2,5
Juni	30	5.652,0	14.529	2,6
Juli	31	6.892,1	28.165	4,1
August	31	10.616,9	75.387	7,1
September	30	9.080,6	32.316	3,6
Oktober	31	8.755,2	42.975	4,9
November	30	6.599,8	27.108	4,1
Dezember	31	6.826,3	39.572	5,8
Gesamt	366	93.437,8	353.224	3,8

Wir konnten in allen 366 Nächsten des vergangenen Jahres Meteore aufzeichnen, wobei zwischen 15 und 69 Kamerasystemen pro Nacht zum Einsatz kamen. Das Kameranetz ist 2012 zwar nicht weiter gewachsen, dafür hat der Grad der Automatisierung noch weiter zugenommen und auch das Wetter tat sein Übriges, so dass die effektive Beobachtungszeit auf über 93.000 Stunden anstieg (2011: 69.000). Wir konnten erneut in allen Monaten mehr als 10.000 Meteore aufzeichnen, wobei der April mit "nur" knapp 13.000 Meteoren das Schlusslicht bildete, während der August mit über 75.000 Meteoren der Höhepunkt

des Jahres war. Insgesamt konnten wir 2012 über 350.000 Meteore aufzeichnen – ein Plus von 13% gegenüber dem Vorjahr. Die mittlere Rate betrug nur 3,8 Meteore pro Stunde (2011: 4,5), womit sie deutlich unter dem Durchschnitt der letzten Jahre lag. Geringer war die stündliche Ausbeute nur im Jahr 2004 (3,4).

Tabelle 14: Verteilung der Videobeobachtungen über die Beobachter im Jahr 2012.

Tabelle 14: Verteilung der Beobachter	Land		Eff. Beobachtungs- zeit [h]		Meteore / Stunde	Kameras (Stationen)
Antal Igaz	Ungarn	346	6.355,9	19.508	3,1	4 (3)
Rui Goncalves	Portugal	328	7.206,0	23.394	3,1	3 (1)
Sirko Molau	Deutschland	323	5.039,1	28.930	5,7	4(2)
Stefano Crivello	Italien	316	5.286,4	26.286	5,0	3 (1)
Carlos Saraiva	Portugal	296	6.110,5	12.579	2,1	3 (1)
Enrico Stomeo	Italien	294	5.860,0	34.268	5,8	3(1)
Mitja Govedic	Slowenien	288	4.360,1	14.311	3,3	3 (1)
Bernd Brinkmann	Deutschland	284	2.539,9	8.019	3,2	2 (2)
Flavio Castellani	Italien	278	2.074,6	7.587	3,7	2(1)
Mike Otte	USA	277	1.401,7	5.375	3,8	1 (1)
Zsolt Perkó	Ungarn	274	1.612,1	10.327	6,4	1 (1)
Maciej Maciejewski	Polen	271	3.216,5	8.228	2,6	3 (1)
Rok Pucer	Slowenien	271	1.643,9	6.231	3,8	1(1)
Szofia Biro	Ungarn	271	1.647,0	4.839	2,9	1(1)
Karoly Jonas	Ungarn	266	1.592,8	4.002	2,5	1 (1)
Szabolcs Kiss	Ungarn	265	1.722,4	1.783	1,0	1 (1)
Istvan Tepliczky	Ungarn	265	1.703,5	7.410	4,3	1 (1)
Leo Scarpa	Italien	262	1.551,3	4.740	3,1	1 (1)
Detlef Koschny	Niederlande	260	2.077,5	12.213	5,9	2 (2)
Javor Kac	Slowenien	258	5.117,9	20.807	4,1	5 (3)
Jörg Strunk	Deutschland	254	3.746,4	8.858	2,4	4(1)
Maurizio Eltri	Italien	253	1.875,8	7.617	4,1	1(1)
Hans Schremmer	Deutschland	246	1.324,0	4.076	3,1	1(1)
Mihaela Triglav	Slowenien	244	972,4	3.610	3,7	1 (1)
József Morvai	Ungarn	238	1.436,6	3.759	2,6	1 (1)
Grigoris Maravelias	Griechenland	237	1.400,9	5.485	3,9	1 (1)
Martin Breukers	Belgien	233	2.142,7	5.595	2,6	2(1)
Erno Berkó	Ungarn	223	3.411,9	16.411	4,8	3 (1)
Steve Kerr	Australien	217	1.480,6	8.583	5,8	1(1)
Szilárd Csizmadia	Ungarn	206	814,4	2.182	2,7	1(1)
Mario Bombardini	Italien	191	1.108,3	5.402	4,9	1(1)
Francisco Ocaña González	Spanien	173	957,2	1.215	1,3	1 (1)
Eckehard Rothenberg	Deutschland	170	871,0	1.903	2,2	1(1)
Paolo Ochner	Italien	159	341,2	1.743	5,1	1 (1)
Arnaud Leroy	Frankreich	155	814,6	858	1,1	1 (1)
Ilkka Yrjölä	Finnland	139	510,9	2.112	4,1	1 (1)
Stane Slavec	Slowenien	135	433,6	1.254	2,9	1 (1)
Wolfgang Hinz	Deutschland	121	565,9	4.326	7,6	1 (1)
Rainer Arlt	Deutschland	68	348,3	413	1,2	1 (1)
Zoltán Zelko	Ungarn	53	239,9	559	2,3	1 (1)
Rosta Štork	Tschechien	18	191,2	5.111	26,7	2 (2)
Luc Bastiaens	Belgien	17	85,7	69	0,8	1 (1)
Péter Bánfalvi	Hungary	13	97,1	667	6,9	1 (1)
Orlando Benitez-Sanchez	Spanien	8	68,0	60	0,9	1 (1)
Ulrich Sperberg	Deutschland	8	47,6	320	6,7	1 (1)
Gregor Kladnik	Slowenien	5	32,5	199	6,1	1(1)

Prinzipiell war das Wetter bis in den Sommer hinein sehr gut, wobei vor allem Januar bis März und der August hervorstachen (Tabelle 13). Eher schlecht war das Wetter dann im letzten Quartal.

Viele der Beobachter konnten ein persönliches Rekordergebnis verbuchen. Insgesamt haben es vier Beobachter auf mehr als 300 Beobachtungsnächte geschafft. Die Tabelle wird von Antal Igaz in Ungarn angeführt, der mit 346 Beobachtungsnächten den bisherigen Rekord von 2008 (336 Nächte) klar überbieten konnte. Mit etwas Abstand folgen Rui Goncalves (Portugal, 328 Nächte), Sirko Molau (Deutschland, 323 Nächte) und Stefano Crivello (Italien, 316 Nächte). Doch auch unterhalb der 300 Beobachtungsnächte drängen sich die Beobachter dicht an dicht. Während man 2005 mit 250 Beobachtungsnächten die Statistik dominiert hätte, befindet man sich 2012 mit diesem Wert gerade mal im Mittelfeld.

Auch bei der effektiven Beobachtungszeit finden sich ähnliche Namen wieder, wenn auch in etwas anderer Reihenfolge: Hier hat Rui Goncalves mit über 7.200 Stunden klar die Nase vorn, gefolgt von Antal Igaz mit über 6.300 und Carlos Saraiva mit über 6.100 Beobachtungsstunden. Deutlich spiegeln sich in diesen Zahlen die besseren Beobachtungsbedingungen in südlichen Gefilden wieder.

Bei der Zahl der aufgezeichneten Meteore gab es keine Veränderung zum Vorjahr. Wie schon 2010 und 2011 liegt hier Enrico Stomeo mit über 34.000 Meteore uneinholbar weit vorne, gefolgt von Sirko Molau mit fast 29.000 und Stefano Crivello mit über 26.000 Meteoren. An dieser Stelle dominieren vor allem Kameras mit hoher Empfindlichkeit und Ausbeute.

Auch in der Langzeit-Statistik des IMO-Netzwerks hat sich einiges getan. Einige Beobachter konnten im Jahr 2012 ihre 1.000ste Beobachtungsnacht verzeichnen (Stefano Crivello, Rui Goncalves, Mihaela Triglav-Cekada, Detlef Koschny und Antal Igaz) – Javor Kac konnte sogar seine 2.000ste Nacht feiern. Bezüglich der Meteorzahl gelang es Enrico Stomeo als zweitem Beobachter überhaupt, mehr als 100.000 Meteore aufzuzeichnen. Ebenfalls 2012 übersprang Sirko Molau die Marke von 200.000 Meteoren.

Tabelle 14 fasst die Details für alle aktiven Beobachter des IMO Video Meteor Networks im Jahr 2012 zusammen, wobei sich die Zahl der Kameras und Stationen auf den Hauptteil des Jahres bezieht.

Auch bei den Videosystemen hat sich einiges getan. Die Top-10 wird inzwischen nur noch von Kameras aus süd- oder südosteuropäischen Ländern okkupiert. Während die beste Kamera im letzten Jahr auf 277 Nächte kam, musste man in diesem Jahr schon über 280 Nächte aufweisen, um überhaupt unter die ersten zehn Kameras zu gelangen (Tabelle 15)!

Drei weitere Kameras mit über 10.000 Meteoren schafften es übrigens nicht in das Ranking: REMO1 (278 Nächte / 11.698 Meteore), STG38 (275 Nächte / 10.651 Meteore) und HUBEC (274 Nächte / 10.327 Meteore).

Tabelle 15:	Die zehn	erfolgreichsten	Videosysteme	im Ja	hr 2012.
-------------	----------	-----------------	--------------	-------	----------

Kamera	Standort	Beobachter		Eff. Beobachtungs-	# Meteore	Meteore /
			tungsnächte	zeit [h]		Stunde
TEMPLAR3	Tomar (PT)	Rui Goncalves	311	2.295,2	5.878	2,6
SCO38	Scorce (IT)	Enrico Stomeo	291	1.987,1	12.235	6,2
BILBO	Valbrevenna (IT)	Stefano Crivello	291	1.928,5	9.193	4,8
ORION2	Sredisce ob Dravi (SL)	Mitja Govedic	288	4.360,1	14.311	3,3
RO1	Carnaxide (PT)	Carlos Saraiva	285	2.047,1	4.323	2,1
RO2	Carnaxide (PT)	Carlos Saraiva	284	2.101,6	4.855	2,3
NOA38	Scorce (IT)	Enrico Stomeo	283	1.941,8	9.698	5,0
MIN38	Scorce (IT)	Enrico Stomeo	282	1.931,1	12.335	6,4
HUDEB	Debrecen (HU)	Antal Igaz	282	1.705,4	5.252	3,1
HUBAJ	Budapest (HU)	Antal Igaz	282	1.393,9	4.505	3,2

Wir möchten uns abschliessend herzlich für das Engagement der vielen Beobachter bedanken, die mit viel Energie so ein hervorragendes Ergebnis zustandegebracht haben. Ein spezieller Dank geht an

Stefano Crivello, Enrico Stomeo, Erno Berkó, Antal Igaz, Bernd Brinkmann und Rui Goncalves, die zusammen mit Sirko Molau Monat für Monat die Konsistenz der Daten geprüft und die hohe Qualität der Datenbasis sichergestellt haben.

1. Beobachterübersicht

Code	Name	Ort	Kamera	Feld	St.LM [mag]	Eff.CA [km ²]	Nächte	Zeit [h]	Meteore
ARLRA	Arlt	Ludwigsfelde/DE	LUDWIG1 (0.8/8)	1488		726	2	5.9	9
BANPE	Bánfalvi	Zalaegerszeg/HU	HUVCSE01 (0.95/5)	2423		361	13	97.1	667
BASLU	Bastiaens	Hove/BE	URANIA1 (0.8/3.8)*	4545	2.5	237	2	11.8	24
BERER	Berkó	Ludanyhalaszi/HU	HULUD1 (0.8/3.8)	5542		3847	12	90.9	1319
			HULUD2 (0.95/4)	3398		671	12	88.1	388
			HULUD3 (0.95/4)	4357	3.8	876	12	84.5	358
BIRSZ	Biro	Agostyan/HU	HUAGO (0.75/4.5)	2427	4.4	1036	18	137.2	582
BOMMA	Bombardini	Faenza/IT	MARIO (1.2/4.0)	5794		739	12	59.5	826
BREMA	Breukers	Hengelo/NL	MBB3 (0.75/6)	2399		699	2	2.9	6
DILL	Broakers	Trengero/T (E	MBB4 (0.8/8)	1470		1208	5	28.9	82
BRIBE	Brinkmann	Herne/DE	HERMINE (0.8/6)	2374		678	15	49.6	130
BRIBE	Dimkinami	Berg. Gladbach/DE	KLEMOI (0.8/6)	2286		1080	14	46.5	179
CASFL	Castellani	Monte Baldo/IT	BMH2 (1.5/4.5)*	4243		371	19	215.1	747
CRIST	Crivello	Valbrevenna/IT	BILBO (0.8/3.8)	5458		1772	24	231.3	1434
CILIDI	Cirveiro	, 11010 , 01111111 11	C3P8 (0.8/3.8)	5455		1586	24	221.7	946
			STG38 (0.8/3.8)	5614		2007	23	192.8	1521
CSISZ	Csizmadia	Baja/HU	HUVCSE02 (0.95/5)	1606		390	13	57.9	191
ELTMA	Eltri	Venezia/IT	MET38 (0.8/3.8)	5631	4.3	2151	16	151.6	1126
GONRU	Goncalves	Tomar/PT	TEMPLAR1 (0.8/6)	2179		1842	17	115.8	434
GOTARO	Goncurves	1011141/11	TEMPLAR2 (0.8/6)	2080		1508	18	131.2	466
			TEMPLAR3 (0.8/8)	1438		571	21	143.6	430
			TEMPLAR4 (0.8/3.8)	4475		442	16	97.7	324
GOVMI	Govedic	Sredisce ob Dr./SI	ORION2 (0.8/8)	1447	5.5	1841	18	143.5	1103
GOVIMI	Governe	Siedisee of Di./Si	ORION3 (0.95/5)	2665		2069	17	107.9	612
			ORION4 (0.95/5)	2662		1043	17	112.9	616
IGAAN	Igaz	Baja/HU	HUBAJ (0.8/3.8)	5552		403	21	102.0	579
10/1/11	1guz	Debrecen/HU	HUDEB (0.8/3.8)	5522		620	18	72.8	256
		Hodmezovasar./HU	HUHOD (0.8/3.8)	5502		764	18	92.0	433
		Budapest/HU	HUPOL (1.2/4)	3790		475	17	80.2	144
JONKA	Jonas	Budapest/HU	HUSOR (0.95/4)	2286		445	16	101.8	455
KACJA	Kac	Kamnik/SI	CVETKA (0.8/3.8)	4914		1842	10	65.7	396
IC/ ICJ/ I	Ruc	Ljubljana/SI	ORION1 (0.8/8)	1402		331	8	26.9	24
		Kamnik/SI	REZIKA (0.8/6)	2270		840	11	77.0	766
		Kullilik/51	STEFKA (0.8/3.8)	5471	2.8	379	11	57.1	419
KERST	Kerr	Glenlee/AU	GOCAM1 (0.8/3.8)	5189		2550	9	47.1	368
KISSZ	Kiss	Sulysap/HU	HUSUL (0.95/5)*	4295		355	14	108.6	166
KOSDE	Koschny	Izana Obs./ES	ICC7 (0.85/25)*	714		1464	26	212.2	2015
ROSDE	Roseimy	Noordwijkerhout/NL	LIC4 (1.4/50)*	2027	6.0	4509	16	57.6	221
LERAR	Leroy	Gretz/FR	SAPHIRA (1.2/6)	3260		301	18	80.6	173
MACMA	Maciejewski	Chelm/PL	PAV35 (1.2/4)	4383		253	15	84.7	407
1411 101411 1	watereje wski	CHOHILLE	PAV36 (1.2/4)*	5732		227	17	98.8	674
			PAV43 (0.95/3.75)*	2544		176	14	102.2	367
MARGR	Maravelias	Lofoupoli/GR	LOOMECON (0.8/12)	738		2698	18	113.6	577
MOLSI	Molau	Seysdorf/DE	AVIS2 (1.4/50)*	1230		6152	7	42.5	838
WOLDI	Wichau	SejsdoniBE	MINCAM1 (0.8/8)	1477		1084	20	122.1	534
		Ketzür/DE	REMO1 (0.8/8)	1467	5.9	2837	21	87.7	724
		Hetzui/DE	REMO2 (0.8/8)	1478		4467	23	94.7	648
			REMO3 (0.8/8)	1420		1967	16	72.2	206
MORJO	Morvai	Fülöpszallas/HU	HUFUL (1.4/5)	2522		532	19	123.8	380
OCAFR	Ocana Gonz		FOGCAM (1.4/7)	1890		109	14	101.7	145
OCHPA	Ochner	Albiano/IT	ALBIANO (1.2/4.5)	2944		358	19	30.6	209
OTTMI	Otte	Pearl City/US	ORIE1 (1.4/5.7)	3837	3.8	460	13	76.2	605
PERZS	Perkó	Becsehely/HU	HUBEC (0.8/3.8)*	5498		460	20	151.9	1668
PUCRC	Pucer	Nova vas nad Dra./SI	MOBCAM1 (0.75/6)	2398		2976	11	60.9	375
ROTEC	Rothenberg	Berlin/DE	ARMEFA (0.8/6)	2366		911	13	53.7	146
SARAN	Saraiva	Carnaxide/PT	RO1 (0.75/6)	2362		381	19	133.8	402
			RO2 (0.75/6)	2381	3.8	459	20	159.9	520
			SOFIA (0.8/12)	738		907	18	154.9	374
SCALE	Scarpa	Alberoni/IT	LEO (1.2/4.5)*	4152		2052	15	106.7	647
SCHHA	Schremmer	Niederkrüchten/DE	DORAEMON (0.8/3.8)	4900		409	16	71.4	338
SLAST	Slavec	Ljubljana/SI	KAYAK1 (1.8/28)	563	6.2	1294	4	17.7	32
STOEN		Scorze/IT	MIN38 (0.8/3.8)	5566		3270	22	177.1	1952
	Stomeo					- , -			
	Stomeo	SCOIZE/11	, , ,		4.2	1911	22	179.7	
	Stomeo	500120/11	NOA38 (0.8/3.8)	5609		1911 3306	22 23	179.7 182.7	1475
STORO	Štork	Kunzak/CZ	, , ,		4.8	1911 3306 2778	22 23 2	179.7 182.7 15.7	

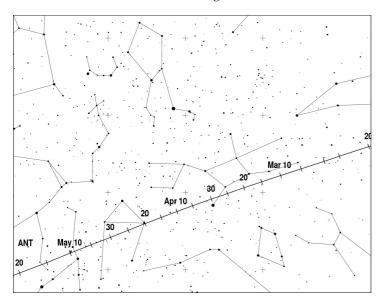
STRJO	Strunk	Herford/DE	MINCAM2 (0.8/6)	2362	4.6	1152	8	35.4	124	l
			MINCAM3 (0.8/12)	728	5.7	975	15	61.3	170	
			MINCAM5 (0.8/6)	2349	5.0	1896	18	61.7	299	
TEPIS	Tepliczky	Budapest/HU	HUMOB (0.8/6)	2388	4.8	1607	20	136.2	920	
TRIMI	Triglav	Velenje/SI	SRAKA (0.8/6)*	2222	4.0	546	18	47.9	445	
YRJIL	Yrjölä	Kuusankoski/FI	FINEXCAM (0.8/6)	2337	5.5	3574	3	31.0	129	
ZELZO	Zelko	Budapest/HU	HUVCSE03 (1.0/4.5)	2224	4.4	933	4	21.2	69	
Summe							31	6826.3	39572	

^{*} aktives Gesichtsfeld kleiner als Videoframe

2. Übersicht Einsatzzeiten (h)

Dezember	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
ARLRA	-	-	-	0.6	-	-	-	-	-	-	-	-	-	-	-
BRIBE	-	0.2	4.8	1.1	3.4	3.2	10.4	4.0	0.8	-	0.2	5.3	-	1.2	-
	0.6	-	-	-	-	3.0	9.3	4.7	-	-	2.0	9.6	1.5	-	2.3
KOSDE	-	-	11.0	11.9	-	-	7.9	9.7	11.8	-	11.4	3.9	11.9	11.9	11.9
	1.6	3.5	4.3	0.6	4.9	-	6.1	-	4.5	8.8	3.5	4.1	-	4.7	-
MOLSI	-	-	-	-	-	8.3	5.6	12.4	-	-	3.6	10.4	0.9	-	-
	2.4	-	-	1.0	-	10.6	5.0	12.0	-	-	3.7	12.8	3.2	-	3.1
	0.7	-	1.6	1.4	9.2	13.7	13.9	-	0.7	3.4	2.4	0.9	8.5	0.7	1.7
	0.6	-	2.3	1.8	10.1	13.9	14.0	0.4	1.0	3.8	3.2	0.9	8.3	0.9	3.3
	1.0	-	2.7	-	9.3	-	14.0	-	0.5	1.7	3.0	0.4	7.9	-	2.4
ROTEC	-	-	-	-	8.0	3.2	6.4	0.3	-	-	-	-	3.3	-	1.7
SCHHA	-	3.3	5.7	-	4.5	5.5	-	4.7	5.8	1.0	5.6	9.5	0.3	6.1	0.7
STRJO	-	1.9	-	-	-	8.0	12.1	-	0.5	-	-	-	6.0	-	0.6
	-	2.9	-	-	0.3	9.1	12.6	1.2	-	-	1.1	4.9	4.8	1.7	0.7
	-	2.5	0.7	0.2	3.5	8.7	12.5	0.7	0.5	-	1.4	4.8	6.7	1.7	-
Summe	162.7	210.0	329.2	157.0	271.4	307.0	263.8	273.3	359.0	348.8	369.4	422.5	233.6	90.8	78.7

Dezember	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
ARLRA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.3	-
BRIBE	-	-	-	8.6	-	-	-	-	-	2.6	-	-	-	1.9	1.9	-
	0.4	-	-	8.5	-	-	-	-	-	-	1.1	0.6	-	1.1	1.8	-
KOSDE	11.9	11.9	9.9	6.3	7.9	5.1	6.9	4.7	3.1	6.4	0.9	5.8	2.6	7.5	8.5	9.5
	3.6	-	-	1.8	-	-	-	-	-	1.5	1.7	-	-	2.4	-	-
MOLSI	1.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3.2	2.0	2.9	-	-	-	-	5.9	6.1	0.3	6.0	-	3.6	10.9	13.7	13.7
	1.2	-	-	-	-	-	-	-	1.2	5.8	2.9	6.9	-	2.0	4.4	4.5
	2.1	-	-	-	-	-	-	-	1.7	5.1	3.3	3.5	3.2	2.4	4.5	4.4
	-	-	-	-	-	-	-	-	2.1	4.8	3.8	9.5	-	-	4.6	4.5
ROTEC	3.3	-	-	-	-	-	-	-	-	4.8	2.6	5.1	-	4.9	3.8	6.3
SCHHA	-	4.8	-	10.5	-	0.3	-	-	-	3.1	-	-	-	-	-	-
STRJO	-	-	-	5.1	-	-	-	-	-	-	-	-	-	-	1.2	-
	-	-	-	8.0	-	-	-	-	-	-	0.5	8.0	-	4.4	1.1	-
	-	-	-	6.4	-	-	-	-	-	0.3	0.6	7.0	-	2.9	0.6	-
Summe	70.5	128.1	137.5	200.0	104.4	81.8	121.6	49.8	127.4	131.6	207.5	160.3	351.9	462.2	303.5	311.0


3. Ergebnisübersicht (Meteore)

Dezember	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
ARLRA	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
BRIBE	-	1	8	1	6	11	36	4	3	-	1	23	-	6	-
	1	-	-	-	-	5	28	3	-	-	9	88	4	-	3
KOSDE	-	-	98	123	-	-	44	58	116	-	222	64	255	97	97
	2	7	12	2	21	-	12	-	12	59	9	38	-	18	-
MOLSI	-	-	-	-	-	125	54	150	-	-	67	439	1	-	-
	13	-	-	3	-	42	13	41	-	-	26	242	19	-	9
	3	-	6	5	42	132	180	-	3	10	48	11	139	3	13
	3	-	13	4	43	123	170	1	6	14	50	6	135	1	17
	2	-	4	-	12	-	54	-	1	1	15	4	81	-	2
ROTEC	-	-	-	-	19	9	15	2	-	-	-	-	46	-	7
SCHHA	-	25	18	-	18	7	-	17	16	6	41	104	2	35	1
STRJO	-	3	-	-	-	11	37	-	2	-	-	-	54	-	2
	-	9	-	-	1	20	42	1	-	-	3	27	30	1	2
	-	17	1	1	7	22	64	1	2	-	4	51	62	6	-
	1	-	18	-	26	-	-	-	-	-	24	-	-	-	-
Summe	578	1186	1197	818	1073	1576	1198	1734	1976	2646	3437	7899	4297	366	343

Dezember	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
ARLRA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	-
BRIBE	-	-	-	22	-	-	-	-	-	3	-	-	-	4	1	-
	1	-	-	28	-	-	-	-	-	-	2	1	-	3	3	-
KOSDE	89	119	97	38	59	31	73	32	44	60	20	26	9	45	41	58
	7	-	-	3	-	-	-	-	-	6	3	-	-	10	-	-
MOLSI	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	1	2	-	-	-	-	13	4	1	8	-	2	22	47	24
	3	-	-	-	-	-	-	-	6	35	8	51	-	5	17	4
	5	-	-	-	-	-	-	-	5	11	5	3	2	3	19	9
	-	-	-	-	-	-	-	-	2	3	5	12	-	-	5	3
ROTEC	11	-	-	-	-	-	-	-	-	5	2	17	-	4	5	4
SCHHA	-	21	-	21	-	2	-	-	-	4	-	-	-	-	-	-
STRJO	-	-	-	13	-	-	-	-	-	-	-	-	-	-	2	-
	-	-	-	15	-	-	-	-	-	-	2	11	-	5	1	-
	-	-	-	18	-	-	-	-	-	1	1	33	-	7	1	-
Summe	226	520	805	838	239	443	420	108	345	339	569	478	1043	1187	869	819

Hinweise für den visuellen Meteorbeobachter im März 2013

von Roland Winkler, Merseburger Str. 6, 04435 Schkeuditz

Die geringe Aktivität des Vormonats setzt sich auch in diesem Monat fort. Durch die mittleren Raten von ca. 3 Meteoren je Stunde ragt die schwache Aktivität des ekliptikalen Stromes der Antihelion Quelle (ANT) kaum heraus. Diese verlagert ihren Schwerpunkt vom Sternbild Leo nach Virgo. Für angenehmes Plotting ohne Mondstörung sollte bevorzugt die erste Monatshälfte genutzt werden.

Die Halos im November 2012

von Claudia und Wolfgang Hinz, Oswaldtalstr. 9, 08340 Schwarzenberg Claudia. Hinz@meteoros.de Wolfgang. Hinz@meteoros.de

Im November wurden von 25 Beobachtern an 24 Tagen 278 Sonnenhalos und an 13 Tagen 36 Mondhalos beobachtet. Auch, wenn die meisten Beobachter weniger als 5 Tage hatten, so sorgten doch einige wenige regionale haloaktive Tage dafür, dass der SHB-Mittelwert überschritten wurde. Begünstigt wurden einige wenige Beobachter in den wenigen sonnenreichen Gebieten im Osten und im Süden, wo an bis zu 15 Tagen Halos gesichtet wurden (KK03/06).

Entsprechend unterschiedlich waren auch die Ergebnisse der langjährigen Beobachter. Während G. Stemmler das schlechteste Novemberergebnis seiner 59-jährigen Reihe verzeichnete, lag W. Hinz in Südbayern im Bereich seines Mittelwertes.

Der November war etwas zu mild, sehr arm an Sonnenschein und recht nass. Durch häufige und teils ergiebige Regenfälle wurde im Südwesten gebietsweise schon nach dem ersten Drittel das Niederschlagssoll erfüllt. Nach Nordosten hin schwächten sich die Tiefausläufer meist deutlich ab und es gab etwas mehr Halotage als im Durchschnitt. Danach kam ganz Deutschland für zwei Wochen in den Einflussbereich des Hochdruckgebietes OTTO. Der Jahreszeit entsprechend trat verbreitet Nebel oder Hochnebel auf, der sich oft auch tagsüber nicht auflöste. Erst das von der Biscaya nach England ziehende Tief FRANZISKA brachte ab dem 25. wieder mehr Abwechslung ins Wettergeschehen mit Sturmböen und Regenfällen. Wirkliche Monatshöhepunkte waren jedoch ziemlich rar.

Das nach Osten zu verwellende Tief Yasmina bescherte am 03. einigen Beobachtern helle und lang andauernde Nebensonnen (KK03: 440min). A. Zeiske konnte in Woltersdorf "völlig unerwartet ein sehr kurzes Halophänomen beobachten. Da am Morgen nur Ac den Himmel schmückte, rechnete ich überhaupt nicht mit Halos. Es war wieder einmal der berühmte Kontrollblick (10.19 Uhr), der mich direkt in einen extrem farbigen und hellen Zirkumzenitalbogen schauen ließ. Obwohl es keine Minute dauerte, bis ich mit der Kamera wieder draußen stand, der Zirkumzenitalbogen war trotzdem weg. Es war nicht zu glauben. Aber es kam noch etwas nach. In den folgenden 110 Sekunden(!) waren insgesamt 22°-Ring, Oberer Berührungsbogen, konkaver Parrybogen, Zirkumzenitalbogen, Supralateralbogen und schwache linke Nebensonne zu sehen. 30 Sekunden später waren alle Halos verschwunden und die linke Nebensonne erstrahlte plötzlich so farbig und hell wie der Zirkumzenitalbogen zu Beginn. 2 Minuten später war auch die Nebensonne "untergegangen" und nach nicht einmal 5 Minuten war alles vorbei. Erst jetzt kam ich dazu, mir Gedanken über die Verursacher der Halos zu machen. In einem sehr kleinen, inhomogen Cirrenfeld hatten sich offensichtlich ungleichmäßig verteilte, erstklassige Kristalle gebildet. Die straffe Südwestströmung, die den Niederschlag am Abend auch zu uns brachte, ließ aber nur ein 4-Minuten-Phänomen zu. Trotzdem war ich froh, im richtigen Moment nach oben geschaut zu haben."

03.11.: Halophänomen bei Berlin mit Parrybogen und Supralateralbogen. Fotos (mit USM): A. Zeiske

Das am 07. bis 10. über Süddeutschland hinweg ostwärts wandernde Zwischenhoch Norman brachte vor allem am Alpenrand größere Nebellücken, in denen bis zu 7 Stunden (KK03) der 22°-Ring und fast ebenso lang die z.T. gleißend hellen Nebensonnen zu sehen waren.

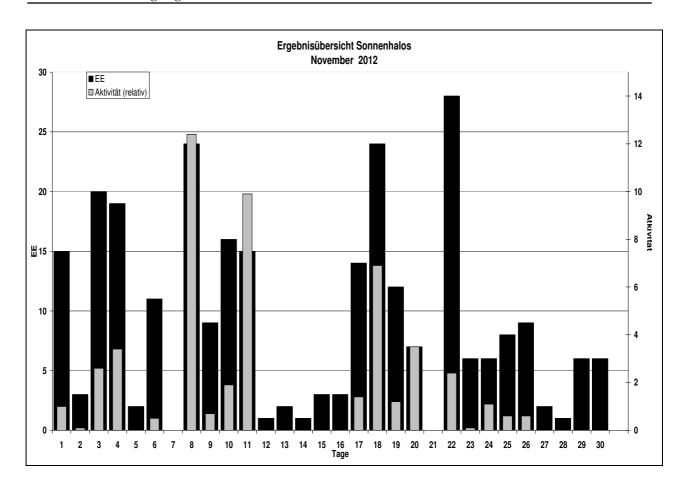
Ein weiteres Halophänomen brachten am 11. die Vorboten des nordwesteuropäischen Trogs CATRIN im Großraum Hannover, wo neben unserem Beobachter R. Nitze (KK74) auch einige Foren-Mitglieder ein fast einstündiges Himmelsspektakel mit Supralateralbogen, seitlichen Lowitzbögen und Horizontalkreisfragmenten erlebten.

11.11.: Halophänomen über dem Großraum Hannover. Fotos: R. Nitze, Barsinghausen

11.11.: Halophänomen über dem Großraum Hannover. Fotos: B. Knispel, Hannover

11.11.: Halophänomen über dem Großraum Hannover. Fotos D. Ricke, Hannover

Am 22. verirrte sich noch ein Standardphänomen in das sonst sehr sonnen- und damit auch haloarme Thüringen, wo sich R. Winter (KK73) an beidem erfreute.


Auf einem Flug von Berlin nach Frankfurt erspähte A. Zeiske am 26. eine extrem helle Untersonne und lieferte damit den letzten Höhepunkt in diesem oft so trüben Monat.

							В	Bec	ob	ac	ch.	te	rü	ibe	ers	si	ch	t i	No	ve	em]	be	r	2	01	L2								
KKGG	1		3		5		7		9		11		13		15	1		19		21		23		25		27		29		1) ;	2)	3)	4)
		2		4		6		8		10		12	1	14	;1	6	18		20		22		24		26		28		30					·
5901					į					į									1					X	i						1	1	1	2
5602	1			2						- 1	1				1	3									:						7	4	0	4
5702					į					į					- 1	2			1						i						3	2	0	2
7402					į					1	8				•				i						:						9	2	0	2
0604	Х	X	1	1	Х			2		1	1			1	1						2	3	1	1	3	X				1	7	11	9	15
7504	х		6	5						5			2						:		2				3					2	3	6	3	9
1305	1			1		3									1	3			4						1					1	3	6	0	6
2205	1										4					1			2						:						8	4	0	4
6906	1									į					į.						3				i						4	2	0	2
6407	1	Kei	n H	alc	, !										1										:						0	0	0	0
7307					;					:					- 7-						6				` ·					1	6	1	0	1
0208															i						1										1	1	0	1
0408																					2	х			:						2	1	1	2
3108	х	х				2				. :					1				:						:						2	1	2	3
4508								2							>	Х									:						2	1	2	3
4608					1					· i					·j - ·						2	х	х		; ·						3	2	2	4
5508																					3				:						3	1	0	1
7708				1						į					- 1		1		i		2			3	:						7	4	0	4
6110	3	1			1	2		3	2	- 1					1										:					1	1	5	0	5
6210			Ве	oba	cht	unc	y au	ıßei	rha	1b	Eur	copa	ıs		i										:									
7210				- <u>-</u> -			=		2	;						3	2		:						• ·					1	0	 5	0	 5
0311	2	1	3	1	į	3		5		3	1				- 1	_						1	1	1	1				2			15	6	15
3811	_		2					5							÷		<u>6</u> 5	1			2	_	x	_	•				-	1		6	1	7
4411	1	Kei	_	alc	, !			-									-	_			_				:					-	0	0	0	0
5111			2					5									5	1			2		х		į					1	-	6	1	7
5317			- <u>-</u> -	_=	;				2	5	1				. ـ ـ إ ـ ـ .			- - 5	:		 1			1	2	1	1			4		14	 1	<u>:</u> 14
9524								. .			1	 1						<u>-</u> -			2	·	:	x			- <u>-</u> -		7	2	9
9335	4	1	3	_	1	1			-		1	-			3 3	≀ າ	1	,				2	2	_	:	1	Λ	6	4			15	_	15
,,,,,	_	-	-		-	-				_				-			-	_				-	_			-	_	_			-			
		1) =	E.	E (So	nne)	2	2)	=]	Cag	e (Sor	nne))	3)	=	Tac	ge	(Mc	ond)	4	1)	= 1	Гag	е	(ges	samt)			

							E	r	де	br	ii	sü	be	er	si	cl	nt	N	rol	ve	mk	oe:	r	20	1	2						
EE	1		3		5		7		9		11		13		15		17		19		21		23		25		27		29			ges
		2		4		6		8		10		12		14		16		18		20	:	22		24		26		28		30		
01	6	1	7	6		4		6	4	6	5	1			1	1	4	6	2	2	:	9	3	2	3	2		1	1	1		84
02	5	1	6	7		2		5	3	3	2		1		1	1	3	4	4	1	:	5	1	2	2	2			1	2	1	64
03	3	1	2	4	2	3		6	2	3	3		1		1		4	5	2	2	:	9	1	1	1	3	1		1	2		63
05	· ·		2	1		1		4		1	2							3	2	1	:	2			1	2			1	1	1	24
06																					•											0
07															!						:											0
08	`										1			1				1	1		: :				1				1		1	6
09																					!						1					1
10																					:											0
11	1		1	1		1		3		2	1					1	3	5	1	1	[]	2	1		7				1		1	25
12	i																				:	1		1							1	2
	15		18		2		0		9		14		2		3		14		12		0		6		8		2		6			260
		3		19		11		24		15		1		1		3		24		7	<u> </u>	28		6	į	9		1		6		269

					E	rsch	ein	unge	n üb	er	EE 1	2					
TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG
	21 27	7504 7504	10	21	5317	11 11	13 21	742 7402	11 11	27 51	7502 2205	20	51	2205	26	44	7507

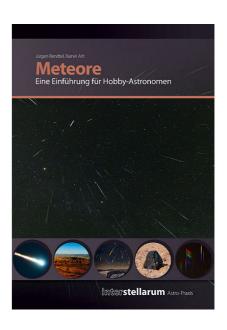
_		_		_		_	
KK	Name / Hauptbeobachtungsort	KK	Name / Hauptbeobachtungsort	KK	Name, Hauptbeobachtungsort	KK	Name, Hauptbeobachtungsort
02	Gerhard Stemmler, Oelsnitz/Erzg.	38	Wolfgang Hinz, Brannenburg	56	Ludger Ihlendorf, Damme	72	Jürgen Krieg, Ettlingen
03	Thomas Groß, München	44	Sirko Molau, Seysdorf	57	Dieter Klatt, Oldenburg	73	Rene Winter, Eschenbergen
04	H. + B. Bretschneider, Schneeberg	45	Thomas Voigt, Coswig	59	Wetterwarte Laage-Kronskamp	74	Reinhard Nitze, Barsinghausen
06	Andre Knöfel, Lindenberg	46	Roland Winkler, Schkeuditz	61	Günter Busch, Fichtenau	75	Andreas Zeiske, Woltersdorf
13	Peter Krämer, Bochum	51	Claudia Hinz, Brannenburg	62	Christoph Gerber, Heidelberg	77	Kevin Förster, Carlsfeld/Erzg.
22	Günter Röttler, Hagen	53	Karl Kaiser, A-Schlägl	64	Wetterwarte Neuhaus/Rennw.	93	Kevin Boyle, UK Stoke-on-Trent
31	Jürgen Götze, Adorf bei Chemnitz	55	Michael Dachsel, Chemnitz	69	Werner Krell, Wersau	95	Attila Kosa-Kiss, RO-Salonta

Anzeige

Astro-Praxis: Meteore

Eine Einführung für Hobby-Astronomen

Jürgen Rendtel, Rainer Arlt


Meteore sind als nächtliche Sternschnuppen jedermann bekannt. Die leuchtenden Spuren der Perseiden huschen in lauen Sommernächten über den Himmel. Helle Feuerkugeln schaffen es regelmäßig in die Tagespresse, wenn sie für nächtliche Polizeiaktionen sorgen.

Dieses Buch erklärt die Entstehung der Sternschnuppen in unserer Atmosphäre und gibt einen Einblick in die Erforschung dieses Himmelsphänomens. Ausführlich wird gezeigt, wie man Meteore beobachten und fotografieren kann.

Ein für das ganze Jahr geltender Meteorkalender stellt zudem alle jährlich wiederkehrenden Meteorströme vor und gibt Beobachtungshinweise für die nächsten Jahre.

160 Seiten, Softcover, 24cm × 17cm, durchgehend farbig, ISBN 978-3-938469-53-8, Juni 2012 (1. Auflage)

19,90 Euro zzgl. Versand

English summary

Visual meteor observations in December 2012:

seven observers recorded data of 373 meteors in 11.9 hours distributed over only five nights. No activity of the Piscids on December 13 and the phi-Cassiopeids on December 31 was detected. Geminid observations were badly affected by poor weather.

The Geminids 2012:

showed a regular return with a peak ZHR of 110. The profile was calculated with a constant r=2.2 and will probably yield higher values in the ascending branch of the skew profile.

Visual meteor observations in 2012:

were made in 606 effective observing hours, missing the

2011 figures by almost 240 hours. Due to the good conditions around the Perseid maximum in August, the number of meteors was higher than in 2011. After a poor February, observers were quite successful in March. Peaks of the major meteor showers except the Perseids were essentially missed.

Video meteor observations in December 2012:

almost 40000 meteors in more than 6800 hours have been recorded. Highest contributions came from the Geminid maximum. No additional activity from sources in Pisces (Dec 13) and Cassiopeia (Dec 31) was found. Ursid rates remined lower than in 2011. Summarizing the entire year, all 366 nights were covered by video camera data. During more than 93000 hours observing time for the entire network, more than 350000 meteors were recorded.

Hints for the visual meteor observer in March 2013:

the Antihelion region is the only source in this time of the year.

Halo observations in November 2012:

25 observers noted 278 solar haloes on 24 days and 36 lunar haloes on 13 days. Except in a few regions, most observers noted haloes only on less than five days. Since on some of the days the number of haloes was high and there were many different types observed, the average figures were exceeded.

Unser Titelbild...

... zeigt die Rauchspur des Boliden über Tscheljabinsk am 15. Februar 2013 um 9:22 lokaler Zeit (03:22 UTC), aufgenommen aus nördlicher Richtung im rund 200km entfernten Jekaterienburg. In der März-Ausgabe von *METEOROS* wird sich ein Beitrag mit diesem Jahrhundertereignis beschäftigen.

Copyrigh/Foto: Alex Alishevskikh (CC BY-SA 2.0)

Impressum:

Die Zeitschrift *METEOROS* des Arbeitskreises Meteore e. V. (AKM) über Meteore, Leuchtende Nachtwolken, Halos, Polarlichter und andere atmosphärische Erscheinungen erscheint in der Regel monatlich. *METEOROS* entstand durch die Vereinigung der *Mitteilungen des Arbeitskreises Meteore* und der *Sternschnuppe* im Januar 1998.

Nachdruck nur mit Zustimmung der Redaktion und gegen Übersendung eines Belegexemplares.

Herausgeber: Arbeitskreis Meteore e. V. (AKM), c/o Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam

Redaktion: André Knöfel, Am Observatorium 2, 15848 Lindenberg

Meteorbeobachtung visuell: Jürgen Rendtel, Eschenweg 16, 14476 Marquardt Video-Meteorbeobachtung: Sirko Molau, Abenstalstraße 13 b, 84072 Seysdorf Beobachtungshinweise: Roland Winkler, Merseburger Straße 6, 04435 Schkeuditz

Feuerkugeln: Thomas Grau, Puschkinstr. 20, 16321 Bernau Halo-Teil: Wolfgang Hinz, Oswaldtalstr. 9, 08340 Schwarzenberg Meteor-Fotonetz: Jörg Strunk, Kneippstr. 14, 32049 Herford

EN-Kameranetz und Meteorite: Dieter Heinlein, Lilienstraße 3, 86156 Augsburg

Polarlichter: Ulrich Rieth, Rumpffsweg 37, 20537 Hamburg

Bezugspreis: Für Mitglieder des AKM ist 2013 der Bezug von METEOROS im Mitgliedsbeitrag enthalten.

Für den Jahrgang 2013 inkl. Versand für Nichtmitglieder des AKM 25,00 €. Überweisungen bitte mit der Angabe von Name und "Meteoros-Abo" an das Konto 2355968009 für den AK Meteore bei der Berliner Volksbank Potsdam, BLZ 10090000

(IBAN: DE29100900002355968009 BIC: BEVODEBB)

Anfragen zum Bezug an AKM, c/o Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam

oder per E-Mail an: Ina.Rendtel@meteoros.de