

Mitteilungsblatt des Arbeitskreises Meteore e. V. über Meteore, Meteorite, leuchtende Nachtwolken, Halos, Polarlichter und andere atmosphärische Erscheinungen

Aus dem Inhalt:	Seite
Visuelle Meteorbeobachtungen im August 2010	200
Perseiden 2010 – ohne Mond, mit Wolken	203
Einsatzzeiten der Kameras im IMO Video Meteor Network, August 2010	204
Hinweise für den visuellen Meteorbeobachter im November 2010	208
Die Halos im Juli 2010	209
Regenbögen – Teil 2: Kaustiken und Katastrophen durch Regentropfen	213
Halophänomen am 20. Juli 2010 in Nordwest-Island	226
Programm des 1. Deutschen Meteoriten-Kolloquiums	229
Summary	229
Titelbild, Impressum	230

Visuelle Meteorbeobachtungen im August 2010

Jürgen Rendtel, Eschenweg 16, 14476 Marquardt Juergen.Rendtel@meteoros.de

Perseidenmaximum ohne Mondstörung – das Ganze wäre perfekt, wenn klarer Himmel dazu kommt. Aber der kam in diesem Jahr gerade nicht dazu. Die Liste ist zwar sehr lang geworden und es ist auch sehr erfreulich, dass neue Beobachter hinzugekommen sind; der genaue Blick zeigt aber, dass gerade zum Maximum nur kurze und durch Wolken beeinträchtigte Beobachtungen zustande kamen. Die Perseidendaten sind im wahrsten Sinne des Wortes erkämpft worden.

Über die Perseiden selbst wird in einem getrennten Beitrag berichtet. Andere Ströme verursachten – erwartungsgemäß – keine besondere Aktivität: Die κ -Cygniden waren mondbeleuchtet und die Aurigiden zum Monatsende litten auch noch unter der Beleuchtung durch das Letzte Viertel (das ja gerade die interessanten Morgenstunden erhellte). Die Beobachtung am Morgen der Nacht 31.8./1.9. lag zwar nur runde vier Stunden neben dem Zeitpunkt des 2007-er Peaks, aber es waren auch keine Meteoroide außer den üblichen zu erwarten – also etwa eine ZHR um 7. Interessant war lediglich die praktische Erfahrung, dass auf Teneriffa der Mond zum Beobachtungsende um 0545 UT tatsächlich im Zenit stand, es also keinen Platz gab, der abgeschattet wurde.

Im August 2010 notierten zwölf (!) Beobachter innerhalb von 104.40 Stunden in 20(!) Nächten Daten von insgesamt 1925 Meteoren. Das ist mehr als im August 2009, doch konnten die Datenmengen von 2006 und 2007 nicht erreicht werden – dazu waren die Wetterbedingungen um das Perseidenmaximum zu ungünstig. Dagegen ist es überaus erfreulich, dass sich fast so viele Beobachter wie im August 2007 beteiligten – neu hinzugekommene sowie wieder aktivierte. Bleibt zu hoffen, dass die Bedingungen nicht zu abschreckend und die eigenen Beobachtungen interessant genug waren, um auch bei bevorstehenden Gelegenheiten wieder aktiv zu werden.

Wie immer werden die Beobachtungen in der Nacht des Monatswechsels komplett dem (ab-)laufenden Monat zugerechnet.

Bec	bachter im August 2010	$T_{\rm eff}$ [h]	Nächte	Meteore
ARLRA	Rainer Arlt, Berlin	6.43	5	140
BADPI	Pierre Bader, Viernau	10.02	5	229
FREST	Stela Frencheva, Berlin	3.51	4	106
GERCH	Christoph Gerber, Heidelberg	15.93	9	151
LUTHA	Hartwig Lüthen, Hamburg	1.02	1	16
MOLSI	Sirko Molau, Seysdorf	3.25	2	87
NATSV	Sven Näther, Wilhelmshorst	4.36	3	87
RENJU	Jürgen Rendtel, Marquardt	22.78	11	462
SCLCN	Christian Schmiel, Berlin	4.44	3	119
SCHSJ	Sergei Schmalz, Wiesbaden	11.00	5	111
STZSL	Stanislav Scholtz, Kulmbach	12.50	4	188
WUSOL	Oliver Wusk, Berlin	8.89	7	229

Berücksichtigte Ströme:

ANT	Antihelion-Quelle	1.	124.	9.
AUR	α -Aurigiden	25.	8 8.	9.
CAP	α -Capricorniden	3.	$7.{-19}.$	8.
KCG	κ -Cygniden	3.	825.	8.
PAU	Pisces Austriniden	15.	$7.{-10}.$	8.
PER	Perseiden	17.	724.	8.
SDA	Südliche δ -Aquariiden	12.	719.	8.
SPO	Sporadisch (keinem Rae	d. zu	geordne	et)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dt	T_{A}	$T_{\rm E}$	λ_{\odot}	$T_{\rm eff}$	$\rm m_{gr}$	\sum_{n}	PER	SDA	me/sj ANT	porad	lische P PAU	Meteor	e SPO	Beob. Ort	Meth./ Int
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		net 201	0				11	1 110	, DDA		0.111	1110	Red	51 0		1110.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		201	2240	122.26	1 59	6 15	27	4	2	2	1	/	0	18	NATSV 11140	D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	04	2102	2240	132.20	1.02	4.50	21 5	4	2	2	1	/	0	10	NAISV 11149 SCUSI 16026	F D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	2200	0140	133.34	1.00	4.00		ა 16	_	-	_	_	_	20	SCHSJ 16036	$\frac{\Gamma}{P/C_{2}}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00	2200	0130	134.20	3.00	5.00		10	0	1	1	1	-	20	CERCH 16103	$\Gamma/C, 3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07	2240	0040	134.20	2.00	6.00	43	10	0	1	1	1	T	16	ST7SI 16181	$\frac{1, 2}{C, 5(1)}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07	2100 2355	0100 0155	135.10 135.26	2.04	6.20	40 56	21	- २	1	2	0	2	20	BENIU 16171	C, J()
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08	2000	2234	136.10	1 45	6.12	27	20	2	2	0	/	0	16	NATSV 11149	P
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	09	2023	2129	137.02	0.75	5.83	5	2	0	0	1		0	2	GERCH 16103	P. 2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	09	2050	2345	137.06	2.91	6.14	35	$\frac{-}{22}$	_	_	_	_	_	13	STZSL 16181	C. 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09	2200	0133	137.13	3.08	6.16	57	36	4	2	1	2	1	11	BADPI 16151	C, 7 $(^2)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	09	2310	0023	137.13	0.56	5.88	13	5	1	_	1	_	0	6	WUSOL 11101	C, 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	09	2317	2346	137.12	0.48	5.70	8	4	0	0	1	_	0	3	ARLRA 11101	Ć
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	0110	0240	137.21	1.50	6.17	43	20	2	4	2	0	2	13	RENJU 16171	C, 3 $(^{3})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2038	2230	138.00	1.83	5.95	12	6	0	1	1	0	0	4	GERCH 16103	P, 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2100	0115	138.08	4.25	6.19	62	40	_	-	-	-	_	22	STZSL 16181	C, 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2106	0135	138.10	3.51	6.07	70	41	6	_	-	-	1	22	WUSOL 11101	C, 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2108	0042	138.08	2.06	6.09	39	20	-	-	-	-	-	19	SCLCN 11101	C, 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2108	0135	138.10	2.90	5.96	45	26	-	—	_	_	2	17	ARLRA 11101	C, 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2230	0005	138.08	0.75	6.08	13	4	-	-	-	-	_	9	MOLSI 11181	C, 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2230	0105	138.09	2.39	6.20	64	40	3	4	1	_	2	14	BADPI 16151	C, 5 $(^4)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2304	0013	138.10	1.15	5.90	25	16	_	_	-	—	4	5	FREST 11101	C, 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	2030	0130	139.02	5.00	6.14	148	88	1	12	4		8	35	RENJU 11152	C, 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0100	0000	100.00	0.00	<i>a</i> 00	10	80						10	000001 10101	(')
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	2100	2300	138.98	2.00	6.00 F 91	48	30	_	_	-		_	18	STZSL 16181	C, 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	2124	2152	130.94	0.13 1 17	0.81 6 10	2		_	_	_		_	0 E	ARLRA III01	$C_{2}(5)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	2200	2350	139.02	1.17 1.20	0.19 6 15	- 30 - 33	აა ევ	0	1	0		1	0 0	ARLRA 11101 NATSV 11140	C, 3(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	2235 2245	2359 0156	139.02 130.07	253	5.03	- 35 70	23 66	1	-	-		1	13	WUSOL 11101	C, 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	2240	0100	139.07	2.00	5.90	59	20	-	_	_		_	30	SCLCN 11101	C, 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	2250 2250	0201	139.07	1.93	6.09	64	$\frac{20}{52}$	_	_	_		_	12	FREST 11101	C, 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	2315	0200	139.09	2.50	6.21	74	59	_	_	_		_	15	MOLSI 11181	C. 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	0024	0154	139.10	1.05	5.84	28	18	_	_	_		_	10	ARLRA 11101	C, 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	2100	2315	139.94	2.00	5.00	21	17	-	-	-		_	4	SCHSJ 16036	C, 2 $(^{8})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2138	2158	139.93	0.33	5.50	6	5	0	0	0		0	1	GERCH 16103	$P'(^{9})$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	2305	0000	140.00	0.69	5.75	22	16	_	_	_		_	6	RENJU 11171	C, 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																$(^{10})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2309	0014	140.01	0.55	5.62	20	17	1	1	_		0	1	WUSOL 11101	С, 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																$(^{11})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2315	0014	140.01	0.58	5.72	19	16	1	1	-		0	1	ARLRA 11101	C, 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		0.01.0											~		$\binom{11}{2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2322	0010	140.01	0.35	5.51	14	9	-	_	-		_	5	FREST 11101	C, 2 (11)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2323	0014	140.02	0.35	6.23	21	16	_	_	_		_	5	SCLCN 11101	C, 2(11)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	0058	0131	140.07	0.50	5.70	15	14	0	0	0		0	1	GERCH 16103	P D/C 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	2215	0215	140.99	2.25	5.60	41	34	0	0	1		0	6 7	GERCH 16103	P/C, 9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 19	2230 2255	0300	141.02 141.00	3.00 0.19	5.04 5.90	40 E	აპ ₄	1	_	_		_		SUBSJ 10030	C, 0 $C(^{12})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 19	2000 2356	0003	141.00 141.00	0.13	0.29 5.25	0 0	4	1	_	_		_		ARIRA 11101	C(12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 12	2000 2358	0003	141.00	0.12	5.20 5.20	0 २	0 २	_	_	_		_	0	ARLAA 11101 FREST 11101	C(12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/	2000	2315	1/1 09	1.00	5.39	5 16	10					_	6	LUTHA 16049	<u>C 7</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	0010	0024	149.01	0.92	5 50	5	1	Ο	0	Ο		0	0 9	WUSOL 11121	$C(^{12})$
	16	0035	0155	142.91	1.30	6.36	38	17	4	2	2		$\frac{1}{2}$	11	BADPI 11605	$C_{.3}$ (¹³)

Dt	T_A	$T_{\rm E}$	λ_{\odot}	$T_{\rm eff}$	$\rm m_{gr}$	\sum_{n}	PER	Strör SDA	ne/spora ANT	adische M KCG	eteor AUR	re SPO	Beob.	Ort	Meth./ Int.
Aug	ust 201	0 (Fort	setzung)												
19	2209	0125	146.73	2.10	5.69	14	8		0	0		6	GERCH	16103	P,2 $(^{14})$
19	2330	0130	146.76	2.00	5.12	9	4		_	1		4	SCHSJ	16036	$C, 4 (^{15})$
19	2347	0150	146.77	1.85	6.30	38	8	1	4	2	1	22	BADPI	11605	C, 3
20	0012	0224	146.80	2.20	6.17	35	8		7	4		16	RENJU	11152	C, 2
20	0046	0214	146.80	1.38	5.59	39	16	3	3	0	1	16	WUSOL	11131	C, 3
20	2201	0200	147.71	2.50	5.57	21	9		0	1		11	GERCH	16103	P,3 $(^{16})$
21	0020	0150	147.75	1.40	6.28	32	8		4	3	2	15	BADPI	16151	P, 2
21	0036	0230	147.77	1.90	6.27	32	8		4	2		18	RENJU	11152	C, 2
21	2208	0236	148.67	2.67	5.35	13	2		0	0		11	GERCH	16103	P, 3 $(^{17})$
24	1705			Voll	mono	ł									
27	2022	2122	154.33	1.00	6.22	10			2	1	/	7	RENJU	15556	С
28	2025	2145	155.30	1.33	6.23	15			4	1	/	10	RENJU	15556	С
29	2025	2225	156.28	2.00	6.28	25			4	1	/	20	RENJU	15556	С
30	2215	2315	157.30	1.00	6.31	13			2		1	10	RENJU	15556	С
31	2125	2355	158.27	2.50	6.33	34			9		2	23	RENJU	15556	$C, 2 (^{18})$
31	2306	0009	158.30	1.00	5.35	3			0		0	3	GERCH	16103	Ρ
01	0405	0545	158.50	1.66	6.15	29			3		6	20	RENJU	15556	$C, 2 (^{19})$

 $(^{1}) c_{F} = 1.10$ in allen Intervallen

(²) $c_F = 1.25$ 2200–0000 UT (Int. 1–4), $c_F = 1.10$ 0000–0030 Int. 5), 0030–0133 ohne Wolken

(³) $c_F = 1.10$ im ersten Intervall 0110–0140 UT

(⁴) $c_F = 1.25$ im letzten Intervall 0030–0105 UT

- $(^5)$ $c_F = 1.02$ in allen Intervallen
- (6) $c_F = 1.03$ in allen Intervallen
- (⁷) $c_F = 1.05$ im ersten Intervall 2030–2100 UT
- (⁸) $c_F = 1.25$ im ersten Intervall 2100–2215 UT
- $(^{9}) c_F = 1.40$

 $\binom{10}{10}$ mittlerer Wert $c_F = 1.25$ (1.20–1.50); diffuse Wolken

- $\binom{11}{}c_F = 1.11$ bis 2333 UT
- $(12) c_F = 1.11$
- $\binom{13}{c_F} c_F = 1.15 \ 0130 0155 \ \text{UT}$
- $\binom{14}{14}$ $c_F = 1.09\ 0019-0125\ \mathrm{UT}$
- $\binom{15}{15}$ $c_F = 1.09\ 0000-0030\ \mathrm{UT}$
- $\binom{16}{16}$ $c_F = 1.09\ 0059-0200\ \text{UT}$
- $\binom{17}{10} c_F = 1.09\ 0056-0236\ \mathrm{UT}$
- $(^{18})$ AUR nur 2240–2355 UT

(¹⁹) Beobachtung wegen AUR-Maximumsnähe trotz Mond nahe Zenit (sehr transparente Luft)

Beobachtungsorte:

- 11131 Berlin-Lankwitz (13°20'E; 52°25' N)
- 11149 Wilhelmshorst, Brandenburg (13°4′E; 52°20′N)
- 11101 Liebenhof, Brandenburg (14°1′E; 52°33′ N)
- 11152 Marquardt, Brandenburg (12°57′50″E; 52°27′34″N)
- 11171 Trebbin, Brandenburg $(13^{\circ}14'E; 52^{\circ}9'N)$
- 11181 Ketzür, Brandenburg (12°38′E; 52°30′N)
- 11605 Viernau, Thüringen (10°33′30″E; 50 39′42″N)
- 16042 Herford, Niedersachsen $(8^{\circ}43' \text{ E}; 52^{\circ}7' \text{ N})$
- 16036 Wiesbaden, Hessen $(8^{\circ}14' \text{ E}; 50^{\circ}5' \text{ N})$
- 16103 Heidelberg, Baden-Württemberg ($8^{\circ}39'E$; $49^{\circ}26'N$)
- 16151 Winterhausen, Bayern (9°57′E; 49°50′N)
- 16171 Kempten/Allgäu, Bayern (10°18′29″E; 47°42′50″N)
- 16181 Kulmbach, Bayern (11°23' E; 50°9' N)
- 15556 Izaña, Teneriffa (16°30'37"W; 28°18'9"N)

Erklärungen zu den Daten in der Übersichtstabelle sind in Meteoros Nr. 9/2010, S. 176 zu finden.

Perseiden 2010 – ohne Mond, mit Wolken

Jürgen Rendtel, Eschenweg 16, 14476 Marquardt Juergen.Rendtel@meteoros.de

Die Perseiden sind trotz aller Konkurrenz durch Leonidenstürme und besondere Orionidenmaxima immer noch der Strom mit der höchsten Anziehungskraft auf die Beobachter. Berechnungen von Jeremie Vaubaillon und Mikhail Maslov ließen den Durchgang durch eine Staubspur des Ursprungskometen erwarten, die aus Meteoroiden verschiedener Perihelpassagen (441, 1479 und 1862) zusammengesetzt sein sollte. Da die Minimaldistanz zum Staub etwas größer als im Vorjahr ausfiel, blieb eine Unsicherheit hinsichtlich Position und insbesondere Aktivität. Leider war die Region um den Pazifik am meisten begünstigt während hier in Europa "nur das normale Maximum" in der Nacht 12./13. August zwischen 2330 und 0200 UT in Erscheinung treten sollte.

Leider erwies sich das Wetter in vielen teilen Mitteleuropas als sehr beobachtungsuntauglich, und es wurden viele kurze Beobachtungen, oft in eher kleinen Wolkenlücken zusammengetragen. Selbst Fahr-Aktionen litten unter den praktisch unkalkulierbaren Bedingungen, und der sonst oft so hilfreiche Kontakt mit dem diensthabenden Meteorologen endete mit einem Schulterzucken. Kaum tat sich eine Lücke auf und man suchte den nächstgelegenen Platz zum Beobachten auf, war sie schon wieder geschlossen um sich einige Minuten später "aus dem Nichts" wieder zu öffnen. Insofern stellt die Summe der Daten mehr an Aufwand und Einsatz dar als es die reine Stunden- und Meteoranzahl zeigen kann.

Einsatzzeiten der Kameras im IMO Video Meteor Network, August 2010

von Sirko Molau, Abenstalstr. 13b, 84072 Seysdorf Sirko.Molau@meteoros.de

1. Beobachterübersicht

Image [-2] [mag] [kn ²] [h] [10 ³ kn ³] BENOR Benitez-S. Las Palmas TIMESS (0.95/50) 33 - 7 12.9 - 38 BERER Berko Ludanyhalaszi HULUD (1.0/2.6) 6638 - - 8 38.7 - 22.6 - 613 CASEL Castellani Monte Baldo BMH12 (0.8/6) 2374 - - 29 173.9 - 863 CRIST Crivello Valbrevenna C3P8 (0.8/3.8) 5575 - 22 123.1 - 863 GONRU Gonedres Tomar TEMPLARI (0.8/6)* 2188 5.3 231 26 172.8 266.2 1195 TEMPLARI (0.88/6)* 21.8 5.7 5.7 - 2 1.6 - 8 8 4.0 122.6 128.4 9.0 128.4 960 128.4 10.25 1195 128.4 960.4 22.2.4 499	Code	Name	Ort	Kamera	Feld	St.LM	Eff.CA	Nächte	Zeit	Tot. CA	Meteore
BEENOR Benitez-S. Las Palmas TIMES (0.9590) 23.9 - - 7 12.9 - 38 BERER Berko. Ludanyhalaxi ITMESS (0.9590) 33.1 - 2 2.6 - 98 BRIBE Brinkmann Here HERMINE (0.86) 2374 - 25 109.1 - 613 CASFL Castellani Monte Baldo BMH1 (0.86) 2374 - 22 12.31 - 803 CRIST Crivello Valbrevena CJP8 (0.87.8) 5593 - - 22 12.31 - 803 GONRU Goncalves Tomar TEMPLAR3 (0.86)* 2303 5.0 2371 26 164.9 308.8 879 GOVMI Gocalves Sredisce ob Dravi MICN3 (0.87.8) 5401 4.0 471 26 12.6 1.6 5.7 16 - 8 3.333 16 90.4 27.2 4.99 4.7 27.1					[° ²]	[mag]	$[km^2]$		[h]	$[10^{3} \text{km}^{2} \text{h}]$	
BERER Berko Ladaphalaszi TIMESS (0.95/50) 33 - 2 2.6 - 9 BRIBE Brinkmann Heren HULID (10.26) 6638 - - 2.5 109.1 - 613 CASEI Castellani Monte Baldo BMH1 (0.86) 2350 - - 2.9 173.9 - 663 CRIST Crivello Valbrevenna CJP8 (0.8/3.8) 5575 - - 2.9 162.5 - 1112 ELTMA Eltri Venezia MET38 (0.8/3.8) 5503 - - 2.9 162.5 - 112 GONRU Gonadves Tomar TEMPLARI (0.8/6)* 21.8 5.3 23.31 26 17.8 8.66.2 17.8 GOVMI Goradics on Dravi DRION (0.8/6)* 21.8 5.3 23.31 26 17.9 404 HERCA Hergenrother Tucson SALSA3 (1.2/4)* 43.2 40 22.6 18.7<	BENOR	Benitez-S.	Las Palmas	TIMES4 (1.4/50)	2359	-	-	7	12.9	-	38
BEREB Berko Ludanyhalaszi HULD (1.02.6) 6638 - - 8 38.7 - 225 CASFL Castellani Monte Baldo BMH1 (0.8/6) 2350 - - 30 138.8 - 471 CASFL Crivello Valbrevenna CJP8 (0.8/3.8) 5575 - - 20 123.1 - 803 CRIST Crivello Valbrevenna CJP8 (0.8/3.8) 5503 - - 22 123.1 - 803 GONRU Goncalves Tomar TEMPLAR2 (0.8/6/9* 233 50 237 26 164.9 308.8 879 GOVMI Goredic Sredisce ob Dravi ORION2 (0.8/6)* 230.3 50 127 16.5 187.4 960 HERCA Hergenrother Tucson SALSA3 (1.2/4)* 430.4 333.8 16 90.4 27.2 257 IGAAN figz Baja HUBA1 (0.8/3.8) 5609 4.2				TIMES5 (0.95/50)	33	-	-	2	2.6	-	9
BRIBE Brinkmann Here HERNINE (0.8/6) 2374 - - 25 109.1 - 613 CASFL Castellani Monte Baldo BMH1 (0.8/6) 243 - - 29 173.9 - 863 CRIST Crivello Valbrevena CSP8 (0.8/3.8) 5575 - - 29 162.5 - 1112 ELTMA Eltri Venezia MET38 (0.8/3.8) 562.0 - - 28 168.8 - 921 GONRU Gonceives Tomar TEMPLAR1 (0.8/6)* 218 5.3 2331 2.6 16.4 908.8 879 GOVMI Govecit Fredise ob Dravi ORION2 (0.8/8) 1471 6.0 3916 116.5 187.4 960 HINWO Hinz Brannenburg ALM2 (0.8/3.8) 5600 4.3 3333 16 90.42.7 249 Igaz Bodmezovasanhely HUHOL (0.8/3.8) 5600 4.3 3333	BERER	Berko	Ludanyhalaszi	HULUD (1.0/2.6)	6638	-	-	8	38.7	-	228
CASFL CRIST	BRIBE	Brinkmann	Herne	HERMINE (0.8/6)	2374	-	-	25	109.1	-	613
CRIST Crivello Valbrevenna BMH2 (0.86)* 4243 - - 29 173.9 - 8803 CRIST Crivello Valbrevenna STG38 (0.87.8) 5573 - - 29 162.5 - 1112 ELTMA Eltri Venezia MET38 (0.87.8) 5573 - - 29 162.5 - 1112 BORMU Gonzelves Tomar TEMPLAR1 (0.86/6)* 2033 5.0 2397 26 172.8 266.2 1195 GOVMI Govedic Sredisce ob Dravi ORION2 (0.86/8) 141 6.0 141.9 308.8 879 HINWO Hinz Brannenburg AKM2 (0.86/2)* 754 5.7 1306 12 49.9 49.7 757 IGAAN Igaz Bajan HUBAJ (0.87.8) 5600 4.3 3338 16 90.4 272.2 499 Igaz Bodneest HUPOL (1.24) 3235 5.114 23 1	CASFL	Castellani	Monte Baldo	BMH1 (0.8/6)	2350	-	-	30	138.8	-	471
CRIST Crivello Valbrevenna C3P8 (0.8/3.8) 5757 - - 22 123.1 - 1803 ELTMA Eltri Venezia MET38 (0.8/3.8) 5593 - 229 162.5 - 1112 GONRU Goncalves Tomm TEMPLARI (0.8/6)* 2188 5.3 2331 26 172.8 266.2 1195 GONRU Govedic Sredisce ob Dravi ORION2 (0.8/8) 1471 6.0 3916 21 116.5 187.4 960 HERCA Hergenrother Tucson SALSA3 (1.2/4) 2303 5.0 21 16 - 8 IGAAN Igaz Baja HUBOL (0.8/3.8) 5600 4.3 3338 16 90.4 22.2 499 IGAAN Igaz Baja HUBOL (0.8/3.8) 5600 4.2 3031 19 97.1 189.6 451 Igaz Hodnezovasarbely HUHOD (0.8/3.8) 5602 3.0 228				BMH2 (0.8/6)*	4243	-	-	29	173.9	-	863
ELTMA GONRU HERCA HUNO HINZ HUNO HINZ HUNO HINZ HUNO HINZ HUNO HUNO HINZ HUNO HUNO HUNCA HU	CRIST	Crivello	Valbrevenna	C3P8 (0.8/3.8)	5575	-	-	22	123.1	-	803
ELTMA Eltri Venezia MET38 (0.8/3.8) 5620 - - 28 168.8 - 921 GONRU Goncalves Tomar TEMPLAR2 (0.8/6)* 2188 5.3 2331 26 1172.8 2662 1195 GOVMI Govedic Sredisce ob Dravi ORION2 (0.8/8) 1471 6.0 3916 21 116.5 8.7 GOVMI Hergenrother Tucson SALSA2 (1.2/4) 4332 4.0 1471 26 128.6 150.8 750 HIWO Hinz Brannenburg HUBAJ (0.8/3.8) 5600 4.3 3338 16 90.4 272.2 499 Igaz Hodmezovaarhely HUHOD (0.8/3.8) 5600 4.2 3031 19 97.1 189.6 451 JOBKL Jobse Oostkaeple BETSY2 (1.2/85)* 1725 - 12 64.8 - 852 KACA Kac Kostanjeve METSK (0.8/6) 2307 5.0 229 </td <td></td> <td></td> <td></td> <td>STG38 (0.8/3.8)</td> <td>5593</td> <td>-</td> <td>-</td> <td>29</td> <td>162.5</td> <td>-</td> <td>1112</td>				STG38 (0.8/3.8)	5593	-	-	29	162.5	-	1112
GONRU Goncalves Tomar TEMPLARI (0.8/6)* 2188 5.3 2331 2.6 17.2.8 266.2 1195 GOVMI Govedic Sredisce ob Dravi ORION2 (0.8/6) 1471 6.0 3916 21 116.5 187.4 960 HERCA Hergenrother Tucson SALSA2 (1.2/4) 2900 - - 2 1.6 - 8 HINWO Hinz Brannenburg AKM2 (0.8/25)* 754 5.7 1306 12 49.9 49.7 257 IGAAN Igaz Bradnenburg AKM2 (0.8/25)* 754 5.7 1306 12 49.9 49.7 257 IGAA Igaz Budapest HUPOL (0.8/3.8) 5609 4.2 3031 19 97.1 189.6 451 JOBKL Jobse Oostkapelle BETSY (21.2K5)* 1725 - 12 63.9 60.2 269 Ljubijana ORION (0.8/3.8) 540 2.2 284	ELTMA	Eltri	Venezia	MET38 (0.8/3.8)	5620	-	-	28	168.8	-	921
COVMI Govedic Sredisce ob Dravi TEMPLAR2 (0.8/6)* 230 5.0 2307 26 16.49 308.8 879 GOVMI Govedic Sredisce ob Dravi ORION2 (0.8/8) 1471 6.0 3916 21 116.5 187.4 960 HERCA Hergenrother Tucson SALSA2 (1.2/4)* 4332 4.0 1471 26 128.6 150.8 750 IGAN Igaz Brannenburg AKM2 (0.8/25)* 754 5.7 1306 12 49.9 49.7 257 IGAAN Igaz Budapest HUHOD (0.8/3.8) 5609 4.3 3338 16 90.4 272.2 499 JOBKL Jobse Oostkapelle BETSY2 (1.2/85)* 1725 - - 12 64.8 - 852 KACJA Kac Kostanjevce METKA (0.8/6) 2307 5.0 223 20 91.6 - 911 KAST Karmink REZIKA (0.8/6) 230	GONRU	Goncalves	Tomar	TEMPLAR1 (0.8/6)*	2188	5.3	2331	26	172.8	266.2	1195
GOVMI Govedic Sredisce ob Dravi ORION2 (0.8/8) 1471 6.0 916 21 116.5 187.4 960 HERCA Hergenrother Tucson SALSA3 (1.2/4)* 4332 4.0 1471 26 128.6 150.8 750 HINWO Hinz Brannenburg AKM2 (0.8/3.8) 5600 4.3 3333 16 90.4 272.2 499 IGAAN Igaz Budapest HUHOL (0.8/3.8) 5600 4.2 3031 19 97.1 189.6 451 JOBKL Jobse Oostkapelle BETSY 2(1.2/45)* 172.5 - - 12 64.8 - 852 KACIA Kac Kostanjevec METKA (0.8/8)* 1381 4.0 2246 12 63.9 60.2 269 LiACA (1.08/3.8) 5238 4.0 2215 223 20 91.6 - 911 Karamik REZIKA (0.8/6 2307 5.0 2233 25				TEMPLAR2 (0.8/6)*	2303	5.0	2397	26	164.9	308.8	879
HERCA Hergenrother Tucson SALSA2 (1.2/4) 2000 - - 2 1.6 - 8 HINWO Hinz Brannenburg AKM2 (0.85/25)* 754 5.7 1306 12 49.9 49.7 257 IGAAN Igaz Baja HUBA (0.83/2.5)* 754 5.7 1306 12 49.9 49.7 22.7 IGAAN Igaz Budapest HUBA (0.83/3.8) 5600 4.3 3338 16 90.4 27.2.2 499 JOBKL Jobse Oostkapelle BETSY2 (1.245)* 1725 - - 12 64.8 - 852 KAC Kostapieve METKA (0.8/8) 1381 40 2245 138.9 60.2 269 Kart Genee GOCAMI (0.8/8) 1420 5.3 2336 28 132.8 147.5 957 Kart Genee GOCAMI (0.8/3.8) 5238 4.0 2215 24 186.2 2.007	GOVMI	Govedic	Sredisce ob Dravi	ORION2 (0.8/8)	1471	6.0	3916	21	116.5	187.4	960
HINWO Hinz Brannenburg SALSA3 (1.2/4)* 432 4.0 1471 26 128.6 150.8 750 IGAAN Igaz Baja HUBAJ (0.8/3.8) 5600 4.3 3338 16 90.4 272.2 499 Igaz Budapest HUPAJ (0.8/3.8) 5600 4.2 3031 19 97.1 189.6 451 JOBKL Jobse Oostkapelle BETSY2 (1.2/85)* 1725<-	HERCA	Hergenrothe	r Tucson	SALSA2 (1.2/4)	2900	-	-	2	1.6	-	8
HINWO Hinz Branenburg AKM2 (0.85/25)* 754 5.7 1306 12 49.9 49.7 257 IGAAN Igaz Hodmezovasarhely HUPOD (0.87.8) 5600 4.3 3338 16 90.4 27.2 499 Igaz Hodmezovasarhely HUPOD (0.87.8) 5600 4.2 3031 19 97.1 189.6 451 JOBKL Jobse Oostkapelle BETSY2 (1.2/85)* 1725 - - 12 64.8 - 852 KACIA Kac Kostanjevec METKA (0.8/8)* 1381 4.0 2246 12 63.9 60.2 269 KACIA Kac Kostanjevec METKA (0.8/8) 2307 5.0 2293 20 91.6 - 911 STEFKA (0.87.8) 5540 4.2 2882 19 7.84 151.9 556 KERST Kerr Glenlee GOCAM1 (0.8/3.8) 5238 40 2215 24 186.2<				SALSA3 (1.2/4)*	4332	4.0	1471	26	128.6	150.8	750
IGAAN Igaz Baja HUBAJ (0.8/3.8) 5600 4.3 3338 16 90.4 272.2 499 Igaz Hodmezovasanhely HUHOD (0.8/3.8) 5609 4.2 3031 19 97.1 189.6 451 Igaz Budapest HUPOL (1.2/45)* 1725 - - 12 64.8 - 852 KACJA Kac Kostanjevec METKA (0.8/6) 1381 4.0 2246 12 63.9 60.2 269 KACJA Kac Kostanjevec METKA (0.8/6) 2307 5.0 2293 20 91.6 - 911 KERST Kerr Glenlee GOCAMI (0.8/3.8) 5540 4.2 2882 19 7.4 151.9 556 KERST Kerr Glenlee GOCAMI (0.8/3.8) 527 3123 5 13.9 - 204 KOSDE Koschny Noordwijkerhout LIC1 (1.4/10)* 2027 - 11 4.3	HINWO	Hinz	Brannenburg	AKM2 (0.85/25)*	754	5.7	1306	12	49.9	49.7	257
Igaz Hodmezovasarhely HUHOD (0.8/3.8) 5609 4.2 3031 19 97.1 189.6 451 JOBKL Jobse Oostkapelle BETSY2 (1.2/4) 3929 3.5 1144 23 102.5 71.9 404 JOBKL Jobse Oostkapelle BETSY2 (1.2/55)* 172.5 - - 12 65.8 - 852 KACJA Kac Kostanjevec METKA (0.8/8)* 1381 4.0 2246 12 65.9 60.2 269 Lizdvbiana ORION1 (0.8/8) 1420 5.3 2336 28 132.8 147.5 957 KERST Kerr Glenlee GOCAM1 (0.8/3.8) 5238 4.0 2215 24 186.2 - 2007 KOSDE Koschny Noodwijkerhout LIC(1 (.4/50)* 2027 - 11 47.5 - 580 LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 1860 - 11 43.5	IGAAN	Igaz	Baja	HUBAJ (0.8/3.8)	5600	4.3	3338	16	90.4	272.2	499
Igaz Budapest HUPOL (1.2/4) 3929 3.5 1144 23 102.5 71.9 404 JOBKL Jobse Oostkapelle BETSY2 (1.2/85)* 1725 - 12 64.8 - 852 KACIA Kac Kostanjevec METKA (0.8/8)* 181 4.0 2246 12 66.9 60.2 269 Ljubijana ORION1 (0.8/8) 1420 5.3 2336 28 132.8 147.5 957 Karmik REZIKA (0.8/3.8) 5540 4.2 2882 19 78.4 151.9 556 KERST Kerr Glenlee GOCAM1 (0.8/3.8) 5238 4.0 2215 24 186.2 - 2007 KOSDE Koschny Noordwijkerhout LIC1 (1.4/50)* 2027 - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1711 6.1 4182 100 38.6 85.5 662		Igaz	Hodmezovasarhely	HUHOD (0.8/3.8)	5609	4.2	3031	19	97.1	189.6	451
JOBKL Jobse Ooskkapelle BETSY2 (1.2/85)* 1725 - - 12 64.8 - 852 KACJA Kac Kostanjevec METKA (0.8/8)* 1381 4.0 2246 12 63.9 60.2 269 Ljubljana ORION1 (0.8/8) 1420 5.3 2336 28 132.8 147.5 957 Kamnik REZIKA (0.8/6) 2307 5.0 2293 20 91.6 - 911 KERST Kerr Glenlee GOCAMI (0.8/3.8) 5238 4.0 2215 24 186.2 - 2007 KOSDE Koschny Noordwijkerhout LIC1 (1.4/50)* 2038 5.7 3123 5 13.9 - 264 LIC4 (1.4/50)* 2027 - - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 10 38.6 85.5 662 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 10		Igaz	Budapest	HUPOL (1.2/4)	3929	3.5	1144	23	102.5	71.9	404
KACJA Kac Kostanjevec METKA (0.8/8)* 1381 4.0 2246 12 63.9 60.2 269 Ljubijana ORION1 (0.8/8) 1420 5.3 2336 28 132.8 147.5 957 Kamnik REZIKA (0.8/6) 2307 5.0 2293 20 91.6 - 911 STEFKA (0.8/3.8) 5540 4.2 2882 19 78.4 151.9 556 KERST Kerr Glenlee GOCAMI (0.8/3.8) 5238 4.0 2215 24 186.2 - 2007 KOSDE Koschny Noordwijkerhout LIC1 (1.4/50)* 2027 - - 11 47.5 - 580 LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 1860 - - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 100 38.6 66.2 49.8 257 MORJO Morai Fülöpszallas HUFUL (1.4/50)* 2522 - <t< td=""><td>JOBKL</td><td>Jobse</td><td>Oostkapelle</td><td>BETSY2 (1.2/85)*</td><td>1725</td><td>-</td><td>-</td><td>12</td><td>64.8</td><td>-</td><td>852</td></t<>	JOBKL	Jobse	Oostkapelle	BETSY2 (1.2/85)*	1725	-	-	12	64.8	-	852
Ljubljana ORIONI (0.8/8) 1420 5.3 2336 28 132.8 147.5 957 REZIKA (0.8/6) 2307 5.0 2293 20 91.6 - 911 KERST Kerr Glenlee GOCAMI (0.8/3.8) 5540 4.2 2882 19 78.4 151.9 556 KOSDE Koschny Noordwijkerhout LIC1 (1.4/50)* 2038 5.7 3123 5 13.9 - 2064 KOSDE Koschny Noordwijkerhout LIC4 (1.4/50)* 2027 - 11 47.5 - 580 LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 1860 - - 1 4.3 - 294 MOLSI Molau Segsdorf AVIS2 (1.4/50)* 1771 6.1 4182 10 38.6 85.5 662 MOLSI Molau Segsdorf AUIS2 (1.4/50)* 1771 6.1 4182 10 38.6 85.5	KACJA	Kac	Kostanjevec	METKA (0.8/8)*	1381	4.0	2246	12	63.9	60.2	269
Kamnik REZIKA (0.8/6) 2307 5.0 2293 20 91.6 - 911 STEFKA (0.8/3.8) 5540 4.2 2882 19 78.4 151.9 556 KOSDE Koschny Noordwijkerhout LIC1 (1.4/50)* 2038 5.7 3123 5 13.9 - 264 KOSDE Koschny Noordwijkerhout LIC1 (1.4/50)* 2027 - - 11 47.5 - 580 LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 1860 - - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 100 38.6 85.5 662 MINCAM1 (0.8/3.8) 553 3.0 2846 17 64.7 93.7 299 MORJO Morvai Fülöpszallas HUFUL (1.4/15) 252 - 21 125.1 - 644 OCHPA Ochner <td< td=""><td></td><td></td><td>Ljubljana</td><td>ORION1 (0.8/8)</td><td>1420</td><td>5.3</td><td>2336</td><td>28</td><td>132.8</td><td>147.5</td><td>957</td></td<>			Ljubljana	ORION1 (0.8/8)	1420	5.3	2336	28	132.8	147.5	957
KERST Kerr Glenlee STEFKA (0.8/3.8) 5540 4.2 2882 19 78.4 151.9 556 KOSDE Koschny Noordwijkerhout LIC1 (1.4/50)* 2038 5.7 3123 5 13.9 - 2007 KOSDE Koschny Noordwijkerhout LIC4 (1.4/50)* 2027 - - 11 47.5 - 98 LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 1860 - - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 10 38.6 85.5 662 MOLSI Molau Seysdorf REMO1 (0.8/3.8) 5592 3.0 974 18 66.2 49.8 257 REMO2 (0.8/3.8) 5635 4.3 2846 17 64.7 93.7 299 MORJO Morvai Fülöpszallas HUFUL (1.4/15) 252 - 26 73.9			Kamnik	REZIKA (0.8/6)	2307	5.0	2293	20	91.6	-	911
KERST Kerr Glenlee GOCAMI (0.8/3.8) 5238 4.0 2215 24 186.2 - 2007 KOSDE Koschny Noordwijkerhout LICI (1.4/50)* 2028 5.7 3123 5 13.9 - 264 LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 2027 - 11 47.5 - 98 LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 1860 - - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 100 38.6 85.5 662 MINCAM1 (0.8/8) 1477 4.9 1716 22 101.6 101.7 624 MORJO Morvai Fülöpszallas HUFUL (1.4/5) 2522 - - 25 105.0 - 386 OCHPA Ochner Albiano ALBIANO (1.2/4.5) 1971 - 26 73.9 -				STEFKA (0.8/3.8)	5540	4.2	2882	19	78.4	151.9	556
KOSDE Koschny Noordwijkerhout LICI (1.4/50)* 2038 5.7 3123 5 13.9 - 264 LICA (1.4/50)* 2037 - - 11 47.5 - 580 TEC1 (1.4/12) 741 - - 9 32.7 - 98 LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 1860 - - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 10 38.6 85.5 662 MINCAM1 (0.8/8) 1477 4.9 1716 22 101.6 101.7 624 MORJO Morvai Fülöpszallas HUFUL (1.4/5) 252 - - 25 105.0 - 386 OCHPA Ochner Albiano ALBIANO (1.2/4.5) 1971 - - 26 73.9 - 153 OTTMI Otte Pearl City ORIEI	KERST	Kerr	Glenlee	GOCAM1 (0.8/3.8)	5238	4.0	2215	24	186.2	-	2007
LUC4 (1.4/50)* 2027 - - 11 47.5 - 580 LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 171 - - 9 32.7 - 98 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 180 - - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 100 38.6 85.5 662 MORJO Morvai Fülöpszallas HUFUL (1.4/5) 2522 - - 25 105.0 - 38.6 OCHPA Ochner Albiano ALBIANO (1.2/4.5) 1971 - - 26 73.9 - 153 OTTMI Otte Pearl City OREI (1.4/16) 3837 - - 12 12.5 - 644 PERZS Perko Becsehely HUBEC (0.8/3.8) 5632 - - 21 13.5 857 ROBBI Roberto Verona FIAMENE (0.8/6) 2369 - <	KOSDE	Koschny	Noordwijkerhout	LIC1 (1.4/50)*	2038	5.7	3123	5	13.9	-	264
LUNRO Lunsford Chula Vista BOCAM (1.4/12) 741 - - 9 32.7 - 98 MULSI Molau Seysdorf AVIS2 (1.4/50)* 1860 - - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 10 38.6 85.5 662 MINCAMI (0.8/8) 1477 4.9 1716 22 101.6 101.7 624 MORJO Morvai Fülöpszallas HUFUL (1.4/5) 2522 - - 255 105.0 - 386 OCHPA Ocherer Albiano ALBIANO (1.2/4.5) 1971 - - 26 73.9 - 153 OTTMI Otte Pearl City ORIEI (1.4/16) 3837 - 21 125.1 - 644 PERZS Perko Becsehely HUBEC (0.8/3.8) 5632 - 26 146.2 - 643 <td></td> <td></td> <td></td> <td>LIC4 (1.4/50)*</td> <td>2027</td> <td>-</td> <td>-</td> <td>11</td> <td>47.5</td> <td>-</td> <td>580</td>				LIC4 (1.4/50)*	2027	-	-	11	47.5	-	580
LUNRO Lunsford Chula Vista BOCAM (1.4/50)* 1860 - - 1 4.3 - 294 MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 10 38.6 85.5 662 MINCAM1 (0.8/8) 1477 4.9 1716 22 101.6 101.7 624 Ketzür REMO1 (0.8/3.8) 5592 3.0 974 18 66.2 49.8 257 REMO2 (0.8/3.8) 5635 4.3 2846 17 64.7 93.7 299 MORJO Morvai Fülöpszallas HUFUL (1.4/5) 2522 - - 26 73.9 - 153 OCHPA Ochner Albiano ALBIANO (1.2/4.5) 1971 - - 26 73.9 - 153 OTTMI Otte Pearl City ORIE1 (1.4/16) 3837 - - 26 146.2 - 644 PERZS Perko Becsehely HUBEC (0.8/3.8) 5537 - 21 93.7 - 447 <td></td> <td></td> <td></td> <td>TEC1 (1.4/12)</td> <td>741</td> <td>-</td> <td>-</td> <td>9</td> <td>32.7</td> <td>-</td> <td>98</td>				TEC1 (1.4/12)	741	-	-	9	32.7	-	98
MOLSI Molau Seysdorf AVIS2 (1.4/50)* 1771 6.1 4182 10 38.6 85.5 662 MINCAM1 (0.8/8) 1477 4.9 1716 22 101.6 101.7 624 Ketzür REMO1 (0.8/3.8) 5592 3.0 974 18 66.2 49.8 257 MORJO Morvai Fülöpszallas HUFUL (1.4/5) 2522 - - 25 105.0 - 38.6 OCHPA Ochner Albiano ALBIANO (1.2/4.5) 1971 - - 26 73.9 - 153 OTTMI Otte Pearl City ORIE1 (1.4/16) 3837 - - 21 125.1 - 644 PERZS Perko Becsehely HUBEC (0.8/3.8) 5632 - - 26 146.2 - 6433 ROTEC Roberto Verona FIAMENE (0.8/3.8) 5632 - - 21 93.7 - 440 SCHHA Schremmer Niederkrüchten DORAEMON (0.8/3.8) 5537 - <td>LUNRO</td> <td>Lunsford</td> <td>Chula Vista</td> <td>BOCAM (1.4/50)*</td> <td>1860</td> <td>-</td> <td>-</td> <td>1</td> <td>4.3</td> <td>-</td> <td>294</td>	LUNRO	Lunsford	Chula Vista	BOCAM (1.4/50)*	1860	-	-	1	4.3	-	294
MINCAMI (0.8/8) 1477 4.9 1716 22 101.6 101.7 624 Ketzür REMO1 (0.8/3.8) 5592 3.0 974 18 66.2 49.8 257 REMO2 (0.8/3.8) 5535 4.3 2846 17 64.7 93.7 299 MORJO Morvai Fülöpszallas HUFUL (1.4/5) 2522 - - 25 105.0 - 386 OCHPA Ochner Albiano ALBIANO (1.2/4.5) 1971 - - 26 73.9 - 153 OTTMI Otte Pearl City ORIE1 (1.4/16) 3837 - - 21 125.1 - 644 PERZS Perko Becsehely HUBEC (0.8/3.8) 5632 - - 26 146.2 - 643 ROTEC Rotento Verona FIAMENE (0.8/6) 2369 - - 21 93.7 - 440 SCHHA Schremmer Nie	MOLSI	Molau	Seysdorf	AVIS2 (1.4/50)*	1771	6.1	4182	10	38.6	85.5	662
Ketzür REMOI (0.8/3.8) 5592 3.0 974 18 66.2 49.8 257 REMO2 (0.8/3.8) 5635 4.3 2846 17 64.7 93.7 299 MORJO Morvai Fülöpszallas HUFUL (1.4/5) 2522 - - 25 105.0 - 386 OCHPA Ochner Albiano ALBIANO (1.2/4.5) 1971 - - 26 73.9 - 153 OTTMI Otte Pearl City ORIE1 (1.4/16) 3837 - - 21 125.1 - 644 PERZS Perko Becsehely HUBEC (0.8/3.8)* 5632 - - 26 146.2 - 643 ROTEC Rothenberg Berlin ARMEFA (0.8/6) 2369 - - 21 93.7 - 440 SCHHA Schremmer Niederkrüchten DORAEMON (0.8/3.8) 5537 - - 21 93.7 - 447 </td <td></td> <td></td> <td></td> <td>MINCAM1 (0.8/8)</td> <td>1477</td> <td>4.9</td> <td>1716</td> <td>22</td> <td>101.6</td> <td>101.7</td> <td>624</td>				MINCAM1 (0.8/8)	1477	4.9	1716	22	101.6	101.7	624
MORJO Morvai Fülöpszallas HUFUL (1.4/5) 2522 - - 25 105.0 - 386 OCHPA Ochner Albiano ALBIANO (1.2/4.5) 1971 - - 26 73.9 - 153 OTTMI Otte Pearl City ORIE1 (1.4/16) 3837 - - 21 125.1 - 644 PERZS Perko Becsehely HUBEC (0.8/3.8)* 5448 3.4 1500 23 114.5 103.5 857 ROBBI Roberto Verona FIAMENE (0.8/3.8) 5632 - - 26 146.2 - 643 ROTEC Rothenberg Berlin ARMEFA (0.8/6) 2369 - - 19 76.8 - 440 SCHHA Schremmer Niederkrüchten DORAEMON (0.8/3.8) 5537 - 21 93.7 - 447 SLAST Slavec Ljubljana KAYAK1 (1.8/28) 596 -			Ketzür	REMO1 (0.8/3.8)	5592	3.0	974	18	66.2	49.8	257
MORJO Morvai Fuliopszalias HUFUL (1.4/5) 2522 - - 25 105.0 - 386 OCHPA Ochner Albiano ALBIANO (1.2/4.5) 1971 - - 26 73.9 - 153 OTTMI Otte Pearl City ORIE1 (1.4/16) 3837 - - 21 125.1 - 644 PERZS Perko Becschely HUBEC (0.8/3.8)* 5448 3.4 1500 23 114.5 103.5 857 ROBBI Roberto Verona FIAMENE (0.8/3.8) 5632 - - 26 146.2 - 643 ROTEC Rothenberg Berlin ARMEFA (0.8/3.8) 5632 - - 21 93.7 - 440 SCHHA Schremmer Niederkrüchten DORAEMON (0.8/3.8) 5537 - 22 98.1 - 473 STOEN Stomeo Scorze MIN38 (0.8/3.8) 5609 - - 27 171.4 - 1762 STORO Stork <	140010		E ulu 11	REMO2 (0.8/3.8)	5635	4.3	2846	17	64.7	93.7	299
OCHPA Ochner Albiano ALBIANO (1.2/4.5) 19/1 - - 26 73.9 - 153 OTTMI Otte Pearl City ORIE1 (1.4/16) 3837 - - 21 125.1 - 644 PERZS Perko Becsehely HUBEC (0.8/3.8)* 5448 3.4 1500 23 114.5 103.5 857 ROBBI Roberto Verona FIAMENE (0.8/3.8) 5632 - - 26 146.2 - 643 ROTEC Rothenberg Berlin ARMEFA (0.8/6) 2369 - - 19 76.8 - 440 SCHHA Schremmer Niederkrüchten DORAEMON (0.8/3.8) 5537 - - 21 93.7 - 447 SLAST Slavec Ljubljana KAYAK1 (1.8/28) 596 - - 27 177.6 - 1818 NOA38 (0.8/3.8) 5609 - - 27 171.4 - 1762 STORO Stork Kunzak KUN1 (1.4/50)* <	MORJO	Morvai	Fülöpszallas	HUFUL (1.4/5)	2522	-	-	25	105.0	-	386
O11Mil Otte Pearl City ORIE1 (1.4/16) 3837 - - 21 125.1 - 644 PERZS Perko Becsehely HUBEC (0.8/3.8)* 5448 3.4 1500 23 114.5 103.5 857 ROBBI Roberto Verona FIAMENE (0.8/3.8) 5632 - - 26 146.2 - 643 ROTEC Rothenberg Berlin ARMEFA (0.8/6) 2369 - - 19 76.8 - 440 SCHHA Schremmer Niederkrüchten DORAEMON (0.8/3.8) 5537 - - 21 93.7 - 447 SLAST Slavec Ljubljana KAYAK1 (1.8/28) 596 - - 22 98.1 - 473 STOEN Stomeo Scorze MIN38 (0.8/3.8) 5631 - - 27 177.6 - 1818 NOA38 (0.8/3.8) 5598 - - 27 183.3 - 2059 STORO Stork Kunzak KUN1 (1.4/50)* <td< td=""><td>OCHPA</td><td>Ochner</td><td>Albiano</td><td>ALBIANO (1.2/4.5)</td><td>19/1</td><td>-</td><td>-</td><td>26</td><td>/3.9</td><td>-</td><td>153</td></td<>	OCHPA	Ochner	Albiano	ALBIANO (1.2/4.5)	19/1	-	-	26	/3.9	-	153
PERZS Perko Becsehely HUBEC (0.8/3.8)* 5448 3.4 1500 23 114.5 103.5 857 ROBBI Roberto Verona FIAMENE (0.8/3.8) 5632 - - 26 146.2 - 643 ROTEC Rothenberg Berlin ARMEFA (0.8/6) 2369 - - 19 76.8 - 440 SCHHA Schremmer Niederkrüchten DORAEMON (0.8/3.8) 5537 - - 21 93.7 - 447 SLAST Slavec Ljubljana KAYAK1 (1.8/28) 596 - - 22 98.1 - 473 STOEN Stomeo Scorze MIN38 (0.8/3.8) 5631 - - 27 177.6 - 1818 NOA38 (0.8/3.8) 5598 - - 27 183.3 - 2059 STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 2778 3 18.1 - 722 Ondrejov OND1 (1.4/50)* 2195 5.8 4	OTTMI	Otte	Pearl City	ORIE1 (1.4/16)	3837	-	-	21	125.1	-	644
ROBBI Roberto Verona FIAMENE (0.8/3.8) 5632 - - 26 146.2 - 643 ROTEC Rothenberg Berlin ARMEFA (0.8/6) 2369 - - 19 76.8 - 440 SCHHA Schremmer Niederkrüchten DORAEMON (0.8/3.8) 5537 - - 21 93.7 - 447 SLAST Slavec Ljubljana KAYAK1 (1.8/28) 596 - - 22 98.1 - 473 STOEN Stomeo Scorze MIN38 (0.8/3.8) 5631 - - 27 177.6 - 1818 NOA38 (0.8/3.8) 5609 - - 27 171.4 - 1762 STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 2778 3 18.1 - 722 STRJO Strunk Herford MINCAM2 (0.8/6) 2357 - - 15 49.2 - 226 MINCAM3 (0.8/12) 728 - - 13 41.	PERZS	Perko	Becsehely	HUBEC $(0.8/3.8)^*$	5448	3.4	1500	23	114.5	103.5	857
ROTEC Romener Niederkrüchten DORAEMON (0.8/3.8) 5537 - - 21 93.7 - 447 SLAST Slavec Ljubljana KAYAK1 (1.8/28) 596 - - 22 98.1 - 473 STOEN Stomeo Scorze MIN38 (0.8/3.8) 5631 - - 27 177.6 - 1818 NOA38 (0.8/3.8) 5609 - - 27 171.4 - 1762 STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 2778 3 18.1 - 722 STRJO Strunk Herford MINCAM2 (0.8/6) 2357 - - 15 49.2 - 226 MINCAM3 (0.8/12) 728 - - 13 41.8 - 224 MINCAM5 (0.8/6) 2344 - - 16 51.9 - 405	RUBBI	Roberto	Verona Deuliu	$FIAMEINE\left(0.8/5.8\right)$	2260	-	-	20	140.2	-	043
SCHHA Schleininer Niederkrüchten DORAEMON (0.8/3.8) 5357 - - 21 99.7 - 447 SLAST Slavec Ljubljana KAYAKI (1.8/28) 596 - - 22 98.1 - 473 STOEN Stomeo Scorze MIN38 (0.8/3.8) 5631 - - 27 177.6 - 1818 NOA38 (0.8/3.8) 5609 - - 27 171.4 - 1762 STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 2778 3 18.1 - 722 STRJO Strunk Herford MINCAM2 (0.8/6) 2357 - - 15 49.2 - 226 MINCAM3 (0.8/12) 728 - - 13 41.8 - 224 MINCAM5 (0.8/6) 2344 - - 16 51.9 - 405	SCIIIIA	Schrommer	Beriin Niadarkriiahtan	AKMEFA(0.8/0)	2309	-	-	19	/0.8	-	440
STOEN Stomeo Scorze MIN38 (0.8/3.8) 5631 - - 27 177.6 - 1818 NOA38 (0.8/3.8) 5609 - - 27 171.4 - 1762 STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 2778 3 18.1 - 722 STRJO Strunk Herford MINCAM2 (0.8/6) 2357 - - 15 49.2 - 226 MINCAM3 (0.8/12) 728 - - 13 41.8 - 224 MINCAM5 (0.8/6) 2344 - - 16 51.9 - 405	SUNCT	Schreininer	Liubliono	DOKAEMON $(0.8/5.8)$	506	-	-	21	95.7	-	447
STOEN Stoneo Scorze MIN38 (0.8/3.8) 5051 - - 27 177.6 - 1818 NOA38 (0.8/3.8) 5609 - - 27 171.4 - 1762 STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 2778 3 18.1 - 722 Ondrejov OND1 (1.4/50)* 2195 5.8 4595 3 19.9 - 747 STRJO Strunk Herford MINCAM2 (0.8/6) 2357 - - 15 49.2 - 226 MINCAM3 (0.8/12) 728 - - 13 41.8 - 224 MINCAM5 (0.8/6) 2344 - - 16 51.9 - 405	SLASI	Starrag	Ljubijalia	MIN29 (0.9/2.9)	5621	-	-	22	90.1	-	4/3
STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 277 183.3 - 2059 STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 2778 3 18.1 - 722 STRJO Strunk Herford MINCAM2 (0.8/6) 2357 - - 15 49.2 - 226 MINCAM3 (0.8/12) 728 - - 13 41.8 - 224 MINCAM5 (0.8/6) 2344 - - 16 51.9 - 405	STUEN	Stomeo	Scorze	$\frac{1}{100} \frac{1}{28} \frac{1}{100} \frac{1}{28} \frac{1}{100} \frac{1}{28} \frac{1}{100} \frac{1}{28} \frac{1}{100} \frac{1}{100$	5600	-	-	27	171.0	-	1010
STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 2778 3 18.1 - 722 STORO Stork Kunzak KUN1 (1.4/50)* 1913 5.4 2778 3 18.1 - 722 STRJO Strunk Herford MINCAM2 (0.8/6) 2357 - - 15 49.2 - 226 MINCAM3 (0.8/12) 728 - - 13 41.8 - 224 MINCAM5 (0.8/6) 2344 - - 16 51.9 - 405				NOA30 (0.073.0)	5509	-	-	27	1/1.4	-	2050
STRJO Strunk Herford KUNA (1.4/50)* 1913 5.4 2778 5 10.1 - 722 STRJO Strunk Herford MINCAM2 (0.8/6) 2357 - - 15 49.2 - 226 MINCAM3 (0.8/12) 728 - - 13 41.8 - 224 MINCAM5 (0.8/6) 2344 - - 16 51.9 - 405	STORO	Stork	Kunzok	SCU30 (0.0/3.0) KUN1 (1.4/50)*	1012	5 4	- 9778	21	105.5	-	2039
STRJO Strunk Herford MINCAM2 (0.8/6) 2357 - 15 49.2 - 226 MINCAM3 (0.8/12) 728 - 13 41.8 - 224 MINCAM5 (0.8/6) 2344 - 16 51.9 - 405	310K0	STOL	Ondreiov	$OND1 (1.4/50)^*$	2105	5.4	4505	3	10.1	-	747
MINCAM3 (0.8/12) 728 13 41.8 - 224 MINCAM5 (0.8/6) 2344 16 51.9 - 405	STRIO	Strunk	Herford	MINCAM2 (0.8/6)	2195	5.0	4393	15	19.9	-	226
MINCAM5 (0.8/6) 2344 16 51.9 - 405	SIKJO	Suulik	nenoru	MINCAM2 (0.8/0)	2337	-	-	13	49.2	-	220
$\frac{1}{10} \frac{1}{10} \frac$				$\frac{\text{MINCAM5}(0.0/12)}{\text{MINCAM5}(0.8/6)}$	120 2311	-	-	15	+1.0 51.0	-	224 205
TEPIS Tenliczky Budanest HUMOB (0.8/6) 2375 4.9 2258 17 103.5 134.7 051	TEPIS	Tenliczky	Budapest	HUMOR (0.8/6)	2344	49	2258	17	103.5	134.7	951
YRIII. Vriölä Kuusankoski FINEXCAM (0.8/6) 2377 17 61.4 - 440	YRIII	Yriölä	Kuusankoski	FINEXCAM (0.8/6)	2337	т.) -	-	17	61.4	-	449
Summe 31 4553.3 - 32407	Summe	11,010	ixuusuunooni	· · · · · · · · · · · · · · · · · · ·	2001			31	4553.3	-	32497

* aktives Gesichtsfeld kleiner als Videoframe

2. Übersicht Einsatzzeiten (h)

August	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
BRIBE	4.5	1.3	3.9	0.3	4.4	7.2	-	3.2	7.7	-	3.9	4.4	8.0	6.9	0.6
HINWO	2.4	-	-	-	-	-	3.3	3.0	6.8	5.0	3.8	-	3.3	3.3	0.7
KOSDE	-	-	-	-	-	-	-	-	3.3	5.2	0.8	0.4	4.2	-	-
	3.4	5.4	-	1.8	5.1	1.5	-	2.7	5.5	-	5.5	5.5	-	-	-
	1.6	3.9	-	-	3.3	-	-	1.0	5.2	-	6.8	-	5.5	-	-
MOLSI	1.5	-	5.7	5.3	-	-	1.5	3.0	-	3.7	4.5	-	-	-	-
	1.9	-	6.3	4.7	-	-	7.1	7.3	7.4	7.5	1.8	0.2	0.3	6.4	-
	2.4	-	6.3	6.3	4.3	-	1.2	4.0	3.4	-	-	1.2	-	-	2.9
	3.8	-	-	6.2	6.4	-	1.7	4.4	3.4	-	-	1.2	-	-	2.0
ROTEC	-	-	6.3	-	6.5	-	-	3.5	5.8	5.8	5.9	2.7	-	-	-
SCHHA	2.7	3.0	1.4	-	1.5	5.8	-	5.0	7.8	-	5.7	3.5	8.0	6.2	-
STRJO	-	-	5.1	1.0	3.4	4.4	-	-	2.6	-	-	2.1	4.3	2.5	-
	-	-	5.8	-	1.5	4.1	-	-	1.8	-	-	2.6	0.9	3.6	1.7
	-	-	5.8	-	2.5	4.4	-	-	2.0	-	0.6	3.0	2.9	3.5	-
Summe	164.2	143.4	111.7	140.2	93.5	123.2	152.3	159.8	197.2	176.8	194.1	179.3	186.2	103.8	159.2
August	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
DDIDE			2.2	81	85	7.0	0.0	1.1	20			1.0	1.6	0.2	0.0

August	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
BRIBE	-	-	2.2	8.4	8.5	7.9	0.9	1.1	2.8	-	-	1.0	1.6	0.2	9.0	9.2
HINWO	-	-	-	3.2	7.5	7.6	-	-	-	-	-	-	-	-	-	-
KOSDE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	4.6	-	-	-	-	-	-	6.5
	-	-	-	-	-	2.0	-	-	3.4	-	-	-	-	-	-	-
MOLSI	-	-	-	6.0	6.7	-	-	-	0.7	-	-	-	-	-	-	-
	-	0.6	4.4	8.0	8.1	8.1	6.4	-	5.9	0.7	0.4	-	3.1	-	-	5.0
	-	-	1.9	7.4	7.5	4.7	3.1	3.2	3.2	0.1	-	-	3.1	-	-	-
	-	-	5.4	7.5	7.5	6.0	1.3	3.9	1.2	0.1	-	-	2.7	-	-	-
ROTEC	1.6	-	4.6	7.5	7.5	4.7	1.8	2.0	1.8	0.8	-	0.3	2.0	-	-	5.7
SCHHA	-	-	3.4	5.5	7.5	8.4	-	1.6	6.3	-	-	1.2	0.3	-	4.0	4.9
STRJO	-	-	1.2	5.5	5.0	5.6	-	-	-	-	-	-	0.4	-	5.7	0.4
	-	-	-	5.5	5.4	6.2	1.3	1.4	-	-	-	-	-	-	-	-
	-	-	1.0	7.1	6.8	6.4	-	0.5	-	-	-	-	0.3	-	4.4	0.7
Summe	162.4	60.3	132.0	164.7	216.5	238.5	187.6	163.1	90.8	124.6	103.2	95.6	91.8	111.9	160.7	164.7

3. Ergebnisübersicht (Meteore)

August	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
BRIBE	25	5	8	1	16	61	-	19	66	-	27	40	100	27	5
HINWO	7	-	-	-	-	-	25	14	37	19	22	-	43	18	3
KOSDE	-	-	-	-	-	-	-	-	69	122	31	2	40	-	-
	20	32	-	11	64	9	-	15	106	-	156	102	-	-	-
	3	10	-	-	10	-	-	4	15	-	22	-	26	-	-
MOLSI	7	-	113	63	-	-	11	27	-	57	139	-	-	-	-
	4	-	62	28	-	-	32	45	89	33	7	4	1	40	-
	8	-	18	20	18	-	2	23	36	-	-	7	-	-	6
	19	-	-	34	36	-	8	23	38	-	-	2	-	-	3
ROTEC	-	-	28	-	33	-	-	18	33	58	54	36	-	-	-
SCHHA	8	8	4	-	3	22	-	25	38	-	22	32	101	24	-
STRJO	-	-	30	2	11	29	-	-	13	-	-	11	31	9	-
	-	-	37	-	7	24	-	-	11	-	-	18	17	21	6
	-	-	49	-	13	61	-	-	26	-	3	42	33	35	-
Summe	1175	983	846	1066	568	1078	1356	1092	1961	2098	2384	2048	2693	635	1076

August	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
BRIBE	-	-	13	48	43	35	1	3	10	-	-	2	3	2	26	27
HINWO	-	-	-	8	29	32	-	-	-	-	-	-	-	-	-	-
KOSDE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	12	-	-	-	-	-	-	53
	-	-	-	-	-	2	-	-	6	-	-	-	-	-	-	-
MOLSI	-	-	-	113	125	-	-	-	7	-	-	-	-	-	-	-
	-	1	15	53	57	45	31	-	36	6	2	-	11	-	-	22
	-	-	7	30	32	11	7	12	8	1	-	-	11	-	-	-
	-	-	15	30	34	15	3	13	15	1	-	-	10	-	-	-
ROTEC	5	-	10	34	35	16	12	15	14	3	-	1	7	-	-	28
SCHHA	-	-	19	23	23	27	-	7	27	-	-	4	1	-	9	20
STRJO	-	-	5	19	25	18	-	-	-	-	-	-	1	-	21	1
	-	-	-	15	25	32	4	7	-	-	-	-	-	-	-	-
	-	-	5	40	33	37	-	2	-	-	-	-	1	-	23	2
Summe	1174	247	629	816	1184	1212	964	731	370	562	381	456	403	567	820	922

Im August 2010 waren die astronomischen Bedingungen optimal: Das Perseidenmaximum fiel in die europäischen Nachtstunden vom 12. zum 13. August, kurz nach Neumond. Nun musste nur noch das Wetter mitspielen. Das tat es auch – allerdings nicht an allen Beobachtungsorten. Erneut waren die Beobachtungsbedingungen an den weiter südlichen gelegenen Orten perfekt, während weiter nördlich gelegene Beobachter häufig das Nachsehen hatten. Insgesamt kamen 25 Kameras auf zwanzig und mehr Beobachtungsnächte mit häufig weit über 100 Beobachtungsstunden, während sich andere Beobachter mit gut 50 Stunden klarem Himmel zufrieden geben mussten.

Im August wuchs das Kameranetz wieder ein Stück: Mit Erno Berko können wir einen weiteren Videobeobachter begrüßen, der eine Kamerastation in Nordungarn betreibt. Damit erreichten wir im August den Rekordwert von 50 aktiven Kameras.

Zugleich gelang es uns, die Rekordausbeute vom Vorjahres-August noch einmal um einige Prozent zu überbieten. Mit über 4.500 Beobachtungsstunden und 32.500 Meteoren nimmt nun der August 2010 den Spitzenplatz in der Langzeitstatistik des IMO Kameranetzwerks ein.

Wie im letzten Monat berichtet, wurde Ende Juli eine neue Version von MetRec eingeführt, die sowohl die präzise Messung der Grenzgröße als auch der effektiven Sammelfläche ermöglicht. Einige Beobachter haben diese Softwareversion bereits im August getestet, so dass erste Ergebnisse von einer größeren Zahl an Kameras vorliegen. Aus diesem Grund wurde auch die Beobachterübersicht (Tabelle 1) überarbeitet.

Zunächst wurde für jede Kamera das Gesichtsfeld (in Quadratgrad) berechnet. Kameras, bei denen das aktive Gesichtsfeld kleiner ist als ein Videoframe (z.B. durch das runde Gesichtsfeld eines Bildverstärkers), sind mit einem Stern markiert. Hier wurde jeweils nur das aktive Gesichtsfeld herangezogen.

Nun würde man erwarten, dass Kameras mit demselben Objektiv und ohne Obstruktion das gleiche Gesichtsfeld aufweisen, was anscheinend nicht der Fall ist. So schwankt die Werte der dreizehn Kameras mit einem 3,8 mm Computar-Objektiv zwischen 5.537 und 5.632 Quadratgrad. Im Mittel sind es 5.598 \pm 32 Quadratgrad. Diese Schwankungen resultieren aus Ungenauigkeiten bei der Bestimmung der Plattenkonstanten, die vor allem an den Gesichtsfeldränder zu merklichen Abweichungen führen können. Der Fehler ist jedoch geringer, als er auf den ersten Blick erscheint, da es sich um ein Flächenmaß handelt. Wenn die Kameras ein quadratisches Gesichtsfeld hätten, dann würde die Kantenlänge des Gesichtsfelds 74,8 \pm 0,2 Grad betragen. Der Fehler ist also deutlich kleiner als ein Prozent. Auch bei den berechneten Gesichtsfeldern der längerbrennweitigen Objektive tritt eine entsprechende Streuung auf.

Im Mittel ergeben sich für die gebräuchlichsten Computar-Objektive folgende Werte:

Brennweite [mm]	2,6	3,8	6	8	12
Kamerazahl	1	13	8	3	2
Gesichtsfeld [Quadratgrad]	6636	5598	2352	1456	735

Dieses Mal wurden in Tabelle 1 zur Demonstration die individuell ermittelten Gesichtsfelder aufgelistet, in Zukunft werden dann nur noch die Mittelwerte angegeben.

Aus dem Gesichtsfeld ergibt sich die Sammelfläche: Anhand der Beobachtungsrichtung der Kamera wird errechnet, wieviele Quadratkilometer das Gesichtsfeld der Kamera in 100 km Höhe abdeckt (Diskussionen auf der vergangenen IMC haben gezeigt, dass diese Normhöhe besser geeignet ist als die bisher verwendeten 85 km). Die Sammelfläche wird auf die absolute Meteorhelligkeit und die Extinktion korrigiert, d.h. die reduzierte Grenzgröße für Meteore in Horizontnähe (aufgrund der größeren Entfernung und der stärkeren Extinktion) wird in eine Verminderung der Sammelfläche umgerechnet. Die Sammelfläche variiert von Kamera zu Kamera um bis zu zwei Größenordnungen – sie reicht von knapp 200 Quadratkilometern für eine Kamera mit 50 mm Objektiv bis zu über 25.000 Quadratkilometer für Kameras mit 2,6 oder 3,8 mm Objektiv. Im Mittel sind es gut 13.000 Quadratkilometer.

Die Sammelfläche allein charakterisiert noch nicht die Leistungsfähigkeit der Kamera– dazu muss als weiterer Faktor die Grenzgröße betrachtet werden. Eine Kamera mit kleiner Sammelfläche aber sehr guter Grenzgröße kann mehr Meteore aufzeichnen als eine Kamera mit großer Sammelfläche aber geringer Grenzgröße. In Tabelle 1 sind für die Kameras, die im August bereits die neue Softwareversion eingesetzt haben, die besten real gemessenen stellaren Grenzgrößen angeben. Der Wert schwankt zwischen knapp 3,5 und gut 6,0 mag, wobei bildverstärkte Kameras oder Kameras mit langbrennweitigen Objektiven naturgemäß die besten Werte aufweisen.

Die effektive Sammelfläche wird nun um die Grenzgrößendifferenz zu 6,5 mag korrigiert, d.h. wiederum dass die effektive Sammelfläche umso kleiner wird, je geringer die Grenzgröße der Kamera ist. Ein entscheidender Faktor ist dabei der Populationsindex r. Er gibt an, um welchen Faktor die Zahl der Meteore steigt, wenn die Grenzgröße sich um 1 mag verbessert. Derzeit wird mit einem mittleren Populationsindex von 2,5 gearbeitet. Bei einer Kamera mit der Grenzgröße 6,5 mag bleibt die Sammelfläche also unverändert, während sie bei 5,5 mag um den Faktor 2,5 (also auf 40%) und bei 4,5 mag um den Faktor 2,5² (also auf 16%) verkleinert wird.

Die so errechnete und in Tabelle 1 dargestellte effektive Sammelfläche spiegelt die reale Leistungsfähigkeit einer Kamera unter guten Beobachtungsbedingungen wieder. Die Werte schwanken zwischen knapp 1.000 und über 4.500 Quadratkilometern effektiv überwachter Fläche (bezogen auf 6,5 mag), wobei die bildverstärkten Kameras erwartungsgemäß die höchsten Werte aufweisen. Es fällt auf, dass der Abstand zu den besten Kameras ohne Bildverstärker geringer als in der Realität anhand der Meteorzahlen beobachtet. In Wirklichkeit wird der mittlere Populationsindex also größer als 2,5 sein.

Schließlich wird in Tabelle 1 für diese Kameras zusätzlich zur effektive Beobachtungszeit die im Laufe des Monats akkumulierte effektive Sammelfläche (in Tausend $\text{km}^2 x$ h) angegeben. Da die meisten Kameras erst im Laufe des Monats auf die neue Softwareversion gewechselt sind, wurden hier die nur teilweise vorhandenen Messwerte auf die Gesamtbeobachtungszeit extrapoliert. In diesen Wert fließen neben der Kameraeffektivität (Sammelfläche, Empfindlichkeit) auch die realen Beobachtungsbedingungen ein, also wie lange am jeweiligen Orten unter welchen Bedingungen (reale Grenzgröße) beobachtet werden konnte. Die Werte schwanken im August zwischen 50.000 und 300.000 km² x h. Primärer Faktor sind die bereits erwähnten Wetterunterschiede, die einigen Orten 3x so lange klaren Himmel bescherte wie anderen.

Insgesamt ist zu beachten, dass es sich um erste Analyseergebnisse für die verschiedenen Kamerasysteme handelt. Sie helfen uns, die Kamerasystem und Standorte besser zu bewerten und die Funktionsfähigkeit der Software zu verifizieren Die Parametereinstellungen waren in einigen Fällen aber noch nicht optimal, so dass sich die Qualität der Ergebnisse in Zukunft noch verbessern wird.

Nach diesen Betrachtungen zur Effizienz der Kameras sei abschließend noch ein kurzer Blick auf die Gesamtaktivität der größten Meteorströme geworfen. Abbildung 1 zeigt die kombinierten Aktivitätskurven der Perseiden (13.300 Meteore), südlichen delta-Aquariiden (2.100 Meteore) und alpha-Capricorniden (1.300 Meteore) in den Monaten Juli und August. Dank der Größe des Kameranetzes können wir inzwischen jedes Jahr vollständige Aktivitätsprofile einzelner Ströme ableiten. Eine weitere Verbesserung der Datenqualität ist zu erwarten, wenn die Normierung der Strommeteore nicht mehr über die sporadischen Meteore, sondern über die effektive Sammelfläche pro Nacht erfolgt.

Abbildung 1: Aktivitätsprofil der Perseiden, südlichen delta-Aquariiden und der alpha-Capricorniden im Juli/August 2010. Aufgetragen ist die Anzahl der Strommeteore geteilt durch die Anzahl der sporadischen Meteore pro Nacht.

Hinweise für den visuellen Meteorbeobachter im November 2010

von Roland Winkler, Merseburger Str. 6, 04435 Schkeuditz

Zu Monatsbeginn ist der ekliptikale Komplex der nördlichen (NTA) und südlichen Tauriden (STA) weiter aktiv. Der Radiantschwerpunkt befindet sich zu Monatsbeginn im Taurus. Zwischen dem 5. und 12.11. erreicht der Stromkomplex erhöhte Raten um 5 Meteore je Stunde.

Zum Ende der ersten Novemberdekade beginnen die Leoniden (LEO) ihre Aktivität. Der zunehmende Mond (erstes Viertel am 13.11.) erlaubt morgendliche Beobachtungen des Aktivitätsanstiegs. Das Maximum wird am 17.11. gegen 21:15 UT erwartet. Dabei können die Raten um 20 Meteore je Stunde liegen. Eine weiteres Maximum wird für diesen Tag um 15:00 UT erwartet. Dies ist allerdings nur von Gebieten im fernen Osten sichtbar, wo der Morgenhimmel noch mondfrei bleibt.

Am 15.11. beginnen die α -Monocerotiden (AMO) ihren kleinen Aktivitätszeitraum. Der kleine Strom erreicht am 21.1. sein Maximum. Die geringen Raten von 2 bis 3 Meteore je Stunde, welche durchaus auch höhere Werte erreichen können, sind jedoch durch den Vollmond nur sehr eingeschränkt beobachtbar.

Ende November verbessern sich dann wieder die Beobachtungsbedingungen (letztes Viertel 28.11.). Die Monocerotiden (MON) beginnen am 27.11. ihre schwache Aktivität (ca. 2 Meteore je Stunde), welche bis in die erste Dezemberhälfte anhält. Bei geeigneten Wetterbedingungen ist dann angenehmes Plotting angesagt.

Die Halos im Juli 2010

von Claudia und Wolfgang Hinz, Bräuhausgasse 12, 83098 Brannenburg Claudia.Hinz@meteoros.de Wolfgang.Hinz@meteoros.de

Im Juli wurden von 30 Beobachtern an 31 Tagen 459 Sonnenhalos und an 7 Tagen 17 Mondhalos beobachtet. Damit ist dieser Monat nach dem März der zweite in diesem Jahr, in dem die Haloaktivität über dem langjährigen Mittelwert liegt. Allerdings erschöpfte sich die hohe Haloaktivität schon nach den ersten beiden Tagen und der Rest des Monats dümpelte bezüglich Halos nur so vor sich hin. Insofern lag die Anzahl der Halotage sowohl im SHB-Schnitt als auch bei den langjährigen Beobachtern unter den Mittelwerten. In der 48-jährigen Statistik von G. Stemmler gab es nur zwei Jahre, in denen im Juli an weniger Tagen als 2010 (3HT) zu sehen war.

Der Juli 2010 begann wie der Juni geendet hatte: sonnig und sehr trocken. Hinzu kam auch noch verbreitet große Hitze, vielfach mit Spitzenwerten von über 35°C. An einzelnen Stationen wurden neue Juli-Rekorde aufgestellt, Koblenz am Rhein, meldete mit 38,8°C am 10. den absoluten Spitzenwert. Auch viele "Tropennächte" mit Tiefstwerten oberhalb 20 Grad wurden gemeldet. Die Wassertemperaturen an der Ostsee betrugen zeitweise bis zu 23°C, überall kamen Badehungrige und Sonnenanbeter auf ihre Kosten. Tief "Quendeline" beendete am 22. mit seinen Ausläufern die Hitzewelle. Die letzte Monatsdekade brachte dann vielerorts ergiebige Niederschläge, so dass der Juli insgesamt sogar etwas zu nass ausfiel. Am Ende landete der Juli 2010 in der Temperatur-Rangliste hinter 2006, 1994 und 1983 immerhin noch in den Top 5. Auch die Sonne schien 38% mehr als im Julidurchschnitt und vor allem im Norden gab es an einigen Stationen neue Monatsrekorde.

In den ersten Julitagen bestimmte Hoch YARI das Wetter in Deutschland. Ein Nordatlantiktief lenkte immer wieder hochreichende Wolken zu uns und bescherte den Beobachtern an den ersten beiden Julitagen in fast ganz Deutschland ein reichhaltiges Haloangebot. In Oldenburg (KK57) und Sachsen (KK04/05/15) wurden 4 Halophänomene registriert. Highlights waren strahlend helle Erscheinungen wie Nebensonne, Lichtsäule und Zirkumzenitalbogen (mehrmals H=3), ein z.T. vollständiger Horizontalkreis (6x) mit 120°-Nebensonnen (KK15), 46°-Ring und Supralateralbogen (5x), Lowitzbögen (KK05/22), Zirkumhorizontalbogen (6x) und Parrybogen (KK04/15/51). Einer der Phänomen-Erhascher, H. Bretschneider (KK04), schreibt dazu:

"Der Juli ist diesmal gleich am ersten Tag durchgestartet. Als ich kurz nach 14 Uhr MEZ zu Hause das Auto abstelle, zeigt der Blick zum mit dichten Cs und Ci bedeckten Himmel die oberen Sektoren eines umschriebenen Halos in Normalhelligkeit. Reichlich eine viertel Stunde später ist Sonne kucken mit Fernrohr angesagt. Jetzt ist im Bereich der Gegensonne ±30° ein Fragment des Horizontalkreises hinzugekommen. Er bleibt 40 min erhalten. Gegen 16.35 Uhr belebte sich die Szenerie. Noch immer ist der umschriebene Halo vorhanden, dessen Dauer sich letztlich auf 200 Minuten ausdehnte. Meine Frau Beate, nun auch von der Arbeit zurück, ist begeistert zu sehen, wie sich seine beiden "Antennen" etwa zu einem Drittel in Richtung der beiden vollständigen, schräg- und außerhalb eines hauchzarten 22°-Halos stehenden Nebensonnen hinab zu ziehen. Beide EE zeigten sich etwa eine Stunde in auffälliger Helligkeit. Zu dieser Zeit erscheint auch ein erster Hauch eines Zirkumzenitalbogens (EE11). Die Sonne befindet sich in Schneeberg 32° über dem Horizont. Nur wenig später ist sicher, was sich da anscheinend als spindelförmiges Hellfeld zu entwickeln schien, ist der Parrybogen, der - wenn auch nur schwach - das Halophänomen für 17 Minuten komplettierte. Die Show ist damit aber nicht vorüber. Die Helligkeit des ZZB's wächst beständig. Um 16.55 Uhr, die Sonnenhöhe beträgt nun 29°, zeigt sich, etwa 1,5° von der EE11 getrennt, 5 Minuten lang ein weiteres farbiges Bogensegment. Es ist der Scheitel des 46°-Halos. Gegen 17.20 Uhr MEZ steht die EE11 gleißend hell am Himmel. Diese enorme Brillanz hält an die 10 Minuten die Betrachter gefangen. Wenig später ziehen die Cirren ab und beenden unsere reichlich 3stündige Haloshow."

Hier noch eine kleine Bildershow verschiedener Beobachter:

Steffen Lamprecht, Radebeul (links), Heiko Ulbricht (rechts), Freital, 1. Juli 2010

Alexander Haussmann, Dresden (links Original, rechts USM), 1. Juli 2010

Udo Hennig, Radeberg (links Original, rechts USM), 1. Juli 2010

Siegfried Müller, Markkleeberg bei Leipzig, 1. Juli 2010

Claudia Hinz, Wendelstein (links) und Wolfgang Hinz, Brannenburg (rechts), 1. Jjuli 2010

Anschließend gab es bis zur 3. Dekade nur wenig Höhepunkte, zu denen eine Untersonne vom Flugzeug aus am 05. (KK75), ein weiterer Zirkumhorizontalbogen am 13. (KK38/51) sowie eine extrem helle und scharf abgegrenzte 120°-Nebensonnen in einem kleinen Ci-Feld am 17.

Etwas großflächiger zeigten sich die Halos am 20. Das Hoch BEOWULF, das sich aus einem Keil des Azorenhochs löste und über Mitteleuropa hinweg nach Nordosten zog, ließ die Fronten des Atlantiktief QUENDELINE verwellen. Dessen hohe Bewölkung versorgte vor allem die norddeutschen Beobachter mit Halos.

R. Nitze: "Es gab zwar "nur" Nebensonnen und einen schwächlichen ZZB, aber die Nebensonnen hatten doch etwas für sich. Insbesondere die linke Nebensonne, welche durchaus die Helligkeitsstufe 3 erreichte. Beide Nebensonnen waren recht farbig. Doch das Interessanteste war, dass sich beide Nebensonnen vorübergehend fast 10° hoch auftürmten. So deutlich habe ich das noch nicht gesehen."

20.07. Helle und aufgetürmte Nebensonnen, Reinhard Nitze, Barsinghausen

Ein weiteres Highlight des Tages war eine linke 120°-Nebensonne mit schiefen Bogen (EE54), die L. Ihlendorf in Damme beobachten konnte.

Eine letzte leichte Zuckung der Haloaktivitätskurve nach oben gab es noch am 27. als das von Frankreich nordwärts ziehende Hoch DAMIAN die umliegenden Tief-Damen abwehrte. Neben leuchtend heller Lichtsäule (KK03) gab es auch Lowitzbögen. G. Röttler (KK22) schreibt dazu: "Die relativ mäßige Ausbeute an Halotagen im Juli brachte letztendlich doch noch einen erfreulichen Abschluss. Nach vorübergehender Aufklarung zog am 27. gegen Abend Cs auf, der später in Ci überging. Gegen 18.20 MEZ leuchtete eine helle und farbige linke Nebensonne auf, der fünf Minuten später eine gleichartige rechte folgte. Nach etwa 10 Minuten schmückte sich die linke Nebensonne oben und unten mit einem hellen und farbigen Lowitzbogen, wodurch sich die Nebensonne senkrecht auszog. Da die rechte Nebensonne nicht zurückstehen wollte, legte sie sich ein Teilstück des Horizontalkreises zu. Letzterer zog sich von der Nebensonne 25° nach außen, war mäßig hell, von weißer Farbe und hatte auffallend scharfe Ränder. Ein rötlicher oberer Berührungsbogen vervollständigte schließlich das Phänomen. Der 22°-Ring – allgemein die häufigste Haloform – zeigte sich nicht. Mit Ausnahme der linken Nebensonne, die mit einer

									Be	ol	ba	ch	te	er	ük	be:	rs	ic	h	t	Jι	11	i	20	01	0									
KKCC	1		3		5	:	7		9		11		13		15	:	17		19	:	21		23		25		27		29		31	1)	2)	31	1)
KKGG		2		4		6		8		10	!	12		14		16		18		20		22		24		26		28		30		L ,	<i>∠</i>)	S)	4)
5901	4									1			1							1			1									8	5	0	5
5602	4					:		1			1	1		3		1		1		6	2										3	21	8	0	8
5702	6					i –		1			i –		1			i –	1	2		- i						1						12	6	0	6
7402	3	3				!			1								1			3											2	13	6	0	6
0604	6	1	2	2	1	1		3	2				1		1		2					1			4		х	1	х	1		29	15	3	17
1305	6	2				[]]					1					!	2	2		6						[3	2				24	8	0	8
2205	3	2										2								2							5					14	5	0	5
6906	4	4				!					!					!															2	10	3	0	3
6407	5	1																														6	2	1	2
7307	4					ļ					ļ					ļ																4	1	0	1
0208								1			<u>+</u>																		1			5	3	0	3
0408	8	1			1	i –					i –		3			i –	2			1				1					1			17	7	0	7
0508	6					!					!					!									1							7	2	0	2
0908	1					i i					i -		1			i -				i												2	2	0	2
1508	9	2	3	1		:	1				:		1			:									5	х				х		22	7	5	9
3108	3			1				2					1				2															9	5	0	5
4608	5					!		2			!			1		!	1		1		1					2					2	15	8	0	8
5508	6					:					-					-	1															7	2	0	2
6110	3	4				2					4	1				2	1								1			1			1	20	10	0	10
6210		1									-					-				1											2	4	3	0	3
7210	2	6				3			1				2			i				[14	5	0	5
0311	3	1	1	2	2	3			1	1		2	1	1			1			1		1				1	1	1	1			25	18	0	18
3811		5		1		i –	1			1	i –		2			i –				- 1						1			2			13	7	0	7
4411				1		1					!					!																2	2	0	2
5111	3	5								1	ļ		2			ļ				i												11	4	0	4
5317	3	2									•		1												1	1		1	1			10	7	0	7
9524														2																	3	5	2	0	2
9235	2	1	2			2		2		6	6			1	2	i i	1		2	- 3									4			31	12	0	12
9335	3	5	4	2	1	6		1	3	4	2			1		1	1		1					2								37	15	0	15
75//	6	1		2	5	i –					i				1	i	1							1		1		4	2			24	10	0	10
		1) =	- = E	E	(So	nne	- ∋)	-	2)	= [Гаg	e	(Sc	onn	e)		3)	=	Tac	ge	(Mo	ond)	4	1)	= 1	ſag	e	(ge	sar	nt)			

kurzen Unterbrechung 50 Minuten sichtbar war, zeigten sich alle anderen Haloformen zwischen 20 und 30 Minuten."

	Ergebnisübersicht Juli 2010																															
EE	1		3		5		7		9	-	11		13		15	-	17		19		21		23	_	25		27		29		31	ges
		2		4		6		8		10		12		14		16		18		20		22		24	ł	26		28		30		
01	21	9	2	6	3	5	1	4	2	2	3	1	9	4	3		10	3	2	3		2	1	2	2	2	1	2	5		5	115
02	20	10	5	1		5		4	2	2	2	1	1	1		1	4	1	1	5	1			1	3	2	2	4	1		3	86
03	23	9	3	3	2	3		2	2	2	2	2		1		1	1			4					4	1	2	1	2	1	2	73
05	5	1		1						1	1	1								1	[1		1		1			14
06					1																											1
07	10	5		1	ļ	2		1		3		1	4		1		1		1						ļ	1			1		1	33
08	2	3	1				1	2	2	1	1										2			1			1				1	18
09					1	!					1			1											1	!						1
10	1																															1
11	14	4	1			1				2	3			2		1		1		2	[2	1			2		2	38
12	2																			1												3
	98		12		9		2		8		12		14		4		16		4		3		1		12		7		12		14	202
		41		12		16		13		13		6		9		3		5		16		2		4		7		7		1		383

	Erscheinungen über EE 12																
TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG	TT	EE	KKGG
01	13	0408	01	23	1305	02	23	7210	11	14	9235	20	14	1305	28	13	7517
01	13	1508	01	23	7210	02	27	5111				20	15	2205	28	44	1329
01	13	4608	01	27	0508				13	13	0408	20	19	5602			
01	13	5508	01	27	1508	05	44	7504	13	23	3811	20	54	5602	28	46	1329
01	15	0508							13	23	5111						
01	20	1508	02	13	9335	06	13	9335				27	13	2205	31	21	9524
01	21	1508	02	23	1305	06	20	9335	17	19	3108	27	14	2205			
01	21	5702	02	23	3811												
01	21	6407	02	23	5111	10	21	9335									

METEOROS Jahrgang 13, 2010

1/1/		1/1/	NI /11 II I II I	1/1/	NI 11 11 1 11 1	1/1/	N 11 11 1 11
KK	Name / Hauptbeobachtungsort	KK	Name / Hauptbeobachtungsort	KK	Name, Hauptbeobachtungsort	KK	Name, Hauptbeobachtungsort
02	Gerhard Stemmler, Oelsnitz/Erzg.	22	Günter Röttler, Hagen	56	Ludger Ihlendorf, Damme	73	Rene Winter, Eschenbergen
03	Thomas Groß, Flintsbach a. Inn	31	Jürgen Götze, Adorf bei Chemnitz	57	Dieter Klatt, Oldenburg	74	Reinhard Nitze, Barsinghausen
04	H. + B. Bretschneider, Schneeberg	38	Wolfgang Hinz, Brannenburg	59	Wetterwarte Laage-Kronskamp	75	Andreas Zeiske, Woltersdorf
05	Steffen Lambrecht, Radebeul	44	Sirko Molau, Seysdorf	61	Günter Busch, Fichtenau	92	Judith Proctor, UK-Shepshed
06	Andre Knöfel, Lindenberg	46	Roland Winkler, Schkeuditz	62	Christoph Gerber, Heidelberg	93	Kevin Boyle, UK Stoke-on-Trent
09	Gerald Berthold, Chemnitz	51	Claudia Hinz, Brannenburg	64	Wetterwarte Neuhaus/Rennw.	95	Attila Kosa-Kiss, RO-Salonta
13	Peter Krämer, Bochum	53	Karl Kaiser, A-Schlägl	69	Werner Krell, Wersau		
15	Udo Hennig, Dresden	55	Michael Dachsel, Chemnitz	72	Jürgen Krieg, Ettlingen		

Regenbögen auf der 10. Konferenz "Licht und Farbe in der Natur" Teil 2 – Kaustiken und Katastrophen durch Regentropfen

von Rainer Schmidt, Zum Lebensbaum 10, D-18147 Rostock schmidtrostock@arcor.de

1. Einleitung

Im ersten Teil dieser Serie stellte sich im Zusammenhang mit dem Regenbogen dritter Ordnung heraus, dass es noch erheblichen Forschungsbearf für die Entwicklung eines Tropfenmodells gibt. Wenn man elliptische Tropfenformen ins Kalkül zieht, so hat man das Problem aus einer unendlichen Menge von abgeplatteten und gestreckten Ellipsoiden die optimale Tropfengeometrie zu finden. Dieser Schritt ist zwingend bevor man die Tropfenzusammenstellung (DSD = Drop-Size-Distribution) für ein Niederschlagsmodell effektiv präzisieren kann. Im zweiten Teil geht es nun vorwiegend um Untersuchungen zur Geometrie und Optik von Wassertropfen, mit dem Ziel möglichst realistische Tropfenmodelle zu entwickeln.

2. Der Regenbogen als Beugungs-Katastrophe

Der Titel der Präsentation von Feng Xu und James Lock [1] wirkt im ersten Moment recht harmlos auf den Leser, nachdem wir uns im ersten Teil dieser Reihe mit den theoretischen Problemen des tertiären Regenbogens beschäftigt haben. Der Schwerpunkt liegt jedoch in der Bewertung von beobachteten optischen Kaustiken bei der Streuung von Licht an einem abgeplatteten Ellipsoid. Am Beispiel des Regenbogens erster Ordnung werden die Kaustiken nach Unstetikeiten und sprunghaften Veränderungen untersucht. Die mathematische Grundlage für die Untersuchung von Unstetigkeiten und sprunghaften Veränderungen in Kaustiken dynamischer Systeme wird durch die Katastrophentheorie²⁾ begründet. An dieser Stelle kommt somit eine weitere mathematische Disziplin zur Erforschung der Regenbögen hinzu. Die

Betrachtung der Regenbögen vom Standpunkt der Katastrophentheorie aus, ist nicht besonders populär. Man findet daher in populärwissenschaftlichen Abhandlungen so gut wie nichts über derartige Beugungskatastrophen, was wohl darin begründet sein mag, dass für die meisten Erklärungen schon die Mie-Streuung ausreichend ist. Aus diesem Grunde ist es sinnvoll hier eine Einführung in dieses Thema zu geben. Um den allgemeinen Überblick zu wahren sind zu Beginn in Tab.1 die größeren Theorien zur Beschreibung der Regenbogen zusammengefasst und es ist kurz erwähnt, welche Phänomene sie erklären und welche nicht.

Theorie	Erklärt	Erklärt nicht
Geometrische Optik (Decartes, Newton, Huygens)	Form, Lage und Farben des Regenbogens.	Überzählige (Interferenz)Bögen
Lineare Wellentheorie (Young, Airy)	Überzählige (Interferenz) Bögen Tropfen von $r \ge 100 \mu m$.	Polarisation vollständig und zu große Abweichungen bei Tropfen $r \le 100 \ \mu m$
Streuung elektromagnetischer Wellen an einem Dielektrikum (Lorenz, Mie, Debye)	Exakte Streutheorie, erklärt den Regenbogen im Prinzip vollständig.	Störende Überlagerung der klassischen Airy-Wellen durch hochfrequente "Kräuselwellen" (Streu-Photonen- Chaos).
Komplexe Drehmoment Theorie (CAM) (Nussenzveig)	Quantenmechanische Effekte bei Streuprozessen.	Sprunghafte Veränderungen in optischen Kaustiken.
Katastrophentheorie (Thom, Arnold, Zeeman)	Unstetigkeiten und sprunghafte Veränderungen in Kaustiken.	

Tab. 1^{3} : – Zusammenfassung der größeren Theorien zur Erklärung des Regenbogens.

2.1. Einführung in die Katastrophentheorie

Zu Beginn starten wir ein Gedankenexperiment. Als Ausgangspunkt konstruieren wir uns ein 3dimensionales Raumkontinuum, welches noch die Eigenschaften homogen und isotrop besitzt. Um ein wellenmechanisch dynamisches System zu bekommen, wird dieser Raum mit Licht durchflutet. Als Ergebnis erhalten wir einen gleichmäßig erhellten Raum, welcher aber auf Dauer recht langweilig auf den Beobachter wirkt, da in ihm nichts weiter passiert. Interessanter wird die Sache schon, wenn wir in diesem Raum einen oder auch mehrere Wassertropfen als Streukörper einbringen. Diese Tropfen wirken jetzt störend in der Fortpflanzung der Lichtwellen. Folglich kommt es nun zu Wechselwirkungen der Wellen mit den Wassertropfen, die wiederum irgendwelche Helligkeitsmuster erzeugen, je nach Komplexität der Wechselwirkungen. Diese Helligkeitsmuster werden in der geometrischen Optik als Kaustik bezeichnet. Sie treten durch die Intensitätsüberhöhung an den einhüllenden Strahlen eines breiten Strahlenbündels auf. Schaut man sich nun die Ränder dieser Singularitäten genauer an, so wird man feststellen dass sie nicht scharf begrenzt sind, wie es die geometrische Optik vorgibt, sondern durch Beugungserscheinungen eher diffus oder fransenartig erscheinen. Diese Ränder lösen sich in Interferenzerscheinungen auf, so dass sich hier wieder die Wellennatur des Lichtes zeigt. Betrachten wir nun den Vorgang in unserem Gedankenexperiment als Prozess und ordnen jedem Kontrollparameter u einen Zustand x(u) zu. Ein regulärer Punkt des Prozesses ist ein Parameterwert u_0 im Kontrollraum ($u \in R_r$), in dessen Umgebung sich x(u) stetig ändert, wenn sich u ebenfalls stetig ändert. Ist das nicht der Fall, so ist u_0 ein Katastrophenpunkt [3]. Unter der Voraussetzung dass der Keim endlich determiniert und die Kodimension r≤4 ist, reduzieren sich die allgemeinen Katastrophenphänomene auf sieben Grundtypen [3] (siehe Tab. 2).

Satz von Thom 1: Es sei $f \in m2(n)$

ein endlich-determinierter Keim. (F, r) sei eine stabile Entfaltung von f
okalas Minimum bai 0 basitzt. Dann bat F antwadar ain ainfachas Mi

mit der Kodimension r ≤ 4 , die ein lokales Minimum bei 0 besitzt. Dann hat *F* entweder ein einfaches Minimum im Punkt 0 oder *F* reduziert sich auf eine der 7 irreduziblen (kanonischen) Entfaltungen *G*_k der Keime *g*_k[3].

Elementarkatastrophe	Keim g _k	Entfaltung G _k	Kodimensi- on r	ADE-Klassifikation [4]
Falte (fold)	x	x ³ +ux	1	A ₂
Spitze (cusp)	X ⁴	$x^4 - ux^2 + vx$	2	A_3
Schwalbenschwanz (Swallowtail)	x ⁵	$x^5 + ux^3 + vx^2 + wx$	3	A_4
Schmetterling (butterfly	x ⁶	$x^6+tx^4+ux^3+vx^2+xw$	4	A_5
Hyperbolischer Nabel- punkt (hyperbolic umbilic)	x [~] +y [~]	$x^3 + y^3 + wxy - ux - vy$	3	D_4
Elliptischer Nabelpunkt (elliptic umbillic)	$\frac{1}{3}x^3 - xy^2$	$\frac{1}{3}x^{3} - xy^{2} + w(x^{2} + y^{2}) - ux - vx$	3	D_4^-
Parabolischer Nabelpunkt (parabolic umbilic)	$x^2y+\frac{1}{4}y^4$	$x^2y + \frac{1}{4}y^4 + tx^2 + wy^2 - ux - vy$	4	D5

Satz von Thom 2: Sei *C* ein vierdimensionaler Parameterraum, sei *X* ein beliebiger endlichdimensionaler Zustandsraum, und sei *V* eine durch *C* parametrisierte, glatte, generische Funktion auf *X*. Dann ist *M* eine glatte Hyperfläche in $X \times C$, und die einzigen Typen von Singularitäten von M sind die folgenden sieben elementaren Katastrophen [5].

Elementarkatastrophe	dim X	Normalform V	dim C redu- zierbar auf	⊉(s;C) [6]
Falte (fold)	≥1	$\frac{1}{3}x^3+ux$	1	$\frac{1}{3}s^3+Cs$
Spitze (cusp)	≥1	$\frac{1}{4}x^4 + \frac{1}{2}ux^2 + vx$	2	$\frac{1}{4}s^4 + \frac{1}{2}C_2s^2 + C_1s$
Schwalbenschwanz (Swallowtail)	≥1	$\frac{1}{5}x^5 + \frac{1}{3}ux^3 + \frac{1}{2}vx^2 + wx$	3	$\frac{1}{5}s^{5} + \frac{1}{3}C_{3}s^{3} + \frac{1}{2}C_{2}s^{2} + C_{1}s$
Schmetterling (butterfly	≥1	$\frac{1}{6}x^{6} + \frac{1}{4}tx^{4} + \frac{1}{3}ux^{3} + \frac{1}{2}vx^{2} + wx$	4	$\frac{1}{6}s^6 + \frac{1}{4}C_4s^4 + \frac{1}{3}C_3s^3 + \frac{1}{2}C_2s^2 + C_1s_1$
Hyperbolischer Nabel- punkt (hyperbolic umbilic)	≥2	$x^3 + y^3 + wxy - ux - vy$	3	$s_1^3 + s_2^3 - C_3 s_1 s_2 - C_2 s_2 - C_1 s_1$
Elliptischer Nabelpunkt (elliptic umbillic)	≥2	$x^{3} - xy^{2} + w(x^{2} + y^{2}) - ux - vy$	3	$s_1^3 - 3s_1s_2^2 - C_3(s_1^2 + s_2^2) - C_2s_2 - C_1s_1$
Parabolischer Nabelpunkt (parabolic umbilic)	≥2	$x^2 y + y^4 + tx^2 + wy^2 - ux - vy$	4	$s_1^4 + s_1 s_2^2 + C_4 s_2^2 + C_3 s_1^2 + C_2 s_2 + C_1 s_1$

Tab. 2: – Satz von Thom und Elementarkatastrophen in der Formulierung aus der Singularitätentheorie [3] und der Katastrophentheorie [5]. t,u,v,w – Kontrollparameter; w,x,y,z – Zustandsparameter, ADE-Klassifikation nach Arnold [4] und Standardpolynome der optischen Katastrophe [6].

Der Katstrophenpunkt ist ein entarteter kritischer Punkt, bei dem alle ersten Ableitungen und einige höhere Ableitungen Null sind. Diese bilden den Keim der topologischen Potentialgeometrien und die Ent-

artung wird durch Taylorreihenentwicklung entfaltet. In Tab. 2 sind nur die strukturell stabilen Elementarkatastropen aufgeführt. Es sind also diejenigen, die nicht durch kleinere Störungen beseitigt werden können.

Arnold hat auf der Grundlage der Lie-Gruppen und der Lie-Algebra die heute gültige Klassifizierung der Katastrophenphänomene (ADE-Klassifikation) entwickelt, welche in der Literatur verbreitet zur Anwendung kommen [4]. Diese ADE-Klassen sind ebenfalls in Tab. 2 für die sieben Elementarkatastrophen mit verzeichnet. Anhand dieser Klassifizierung der Phänomene ist es nun möglich, Kaustiken auf derartige Topologischen Strukturen hin, gezielt zu untersuchen. Die Anwendung der Katastrophentheorie auf die Optik wird durch die Gültigkeit des Fermatschen Prinzips möglich. Es besagt sinngemäß, dass das Licht beim durchlaufen einer bestimmten Strecke von mehreren möglichen Wegen immer die kleinste optische Weglänge nimmt. Es geht also um die Minimierung der Lichtlaufzeit in Abhängigkeit vom gewählten Weg.

2.2. Katastrophentheorie und Mie-Streuung

Beugungskatastrophen auf der Grundlage der Wellentheorie wurden unter anderem auch von M.V. Berry [6] – [9] untersucht. Da seine Publikationen jederzeit online einsehbar sind, soll an dieser Stelle aus Platzgründen nicht näher darauf eingegangen werden. Der Interesse halber sind in Tab. 2 die Normalformen der optischen Beugungskatastrophen mit enthalten. Der nächste Schritt zur Entwicklung einer verallgemeinerten Theorie zur Entstehung des Regenbogens mit all seinen Begleiterscheinungen ist der Nachweis der optischen Beugungskatastrophe in den Kaustiken der Mie-Streuung. Feng Xu und James Lock [1] konnten in diesem Zusammenhang bereits auf Vorarbeiten von Marston und Trinh [10] zurückgreifen.

Für folgende Berechnungen kommen zwei verschiedene Verfahren zur Anwendung:

- Nutzung der elliptischen Wellenfunktion für die Mie-Streuung (a $\approx < 7 \ \mu m$).
- Methode der erweiterten Grenzwertbedingungen (T-Matrix-Methode)⁵⁾ (a $\approx < 11 \mu m$).

In beiden Verfahren kommt die Partialwellenzerlegung der Debye-Serie zur Anwendung und nur die p = 2 Komponente der Streuamplituden wird für weitere Auswertungen betrachtet. Da nach Tab. 1 die Mie-Streuung den Regenbogen im Prinzip vollständig erklärt, müssten theoretisch in der erweiterten Fassung für axialsymmetrische Tropfen bei identischem Versuchsaufbau die Kaustiken der reinen Wellentheorie und die Streukaustiken der Mie-Theorie vergleichbar sein, so dass hier ebenfalls die Elementarkatastropen auftreten sollten.

Zum besseren Verständnis der nachfolgenden Versuche benutzen wir wieder unser oben eingeführtes Gedankenexperiment. In diesem Raum positionieren wir ein abgeplattetes Ellipsoid, als transparentes Steumedium, dessen Geometrie stufenweise verändert werden kann. Es soll in diesem Zusammenhang der Begriff "abgeplattetes Ellipsoid" Verwendung finden, weil die Geometrie des Ellipsoids in diesem Verfahren durch das Verhältnis der beiden Halbachsen a/b frei definierbar ist, wobei immer die Relation (a>b) erhalten bleiben muss. Da die Kugelsymmetrie als Spezialfall (a/b=1,0 und b=a) und als Startbedingung im Gedankenexperiment auftritt, ist eine Trennung zwischen Kugelsymmetrie und Axialsymmetrie, wie in Tab. 3 des ersten Teils dieses Konferenzberichtes [2] noch dargestellt, in diesem Fall nicht mehr sinnvoll. Zwischen der Lichtquelle und dem Streumedium wird ein Bildschirm zentriert auf θ = 180° mit einer Lochblende installiert, auf dem die Streukaustiken dann abgebildet werden. Die Position des Bildschirms zwischen Lichtquelle ($\theta = 0^{\circ}$) und Streumedium ergibt sich zwingend aus $\theta = 137,69^{\circ}$ für (p=2) und die Lochblende sorgt einerseits dafür, dass das Licht ungehindert auf das Streumedium trifft und andererseits dass weitestgehend parallelisiertes Licht am Ellipsoid gestreut wird. So vermeidet man störende Mehrfachbilder durch überlappende Streukaustiken. In diesem Zusammenhang sei noch erwähnt, dass der Begriff Kaustik nicht auf die geometrische Optik beschränkt ist, sondern er kann prinzipiell auf alle dynamischen Systeme angewendet werden. Eine allgemeine Definition des Begriffes Kaustik findet man bei Tribel [3]. In Anlehnung an diese Definition werden hier nur die, durch die Streuung entstehenden Helligkeitsmuster, als Streukaustiken⁶⁾ bezeichnet. Das mit unserem Gedankenexperiment in Verbindung gebrachte, und von Feng Xu und James Lock [1] verwendete Laborexperiment, ist schematisch in Tab. 4, 6. abgebildet.

Tab.3⁴: – Abbildungen der Streukaustiken für unterschiedliche Halbachsenverhältnisse a/b, nach Feng Xu & Janes Lock [1]; n = 1,334; $\lambda = 0,5145 \mu m$; TM – Polarisationsrichtung transversal magnetisch; TE – Polarisationsrichtung transversal elektrisch.

 $Tab.4^{(0)}$: – Faltungs-, Spitzen- und Hyperbolic umbilic- Katastrophen an Streukaustiken für p=2 nach Feng Xu & Lock [1]; Normalformen (V) der Spitzen- und Hyperbolic umbilic- Katastrophen nach der Katastrophentheorie von Thom durch parametrisierte, glatte und generische Funktion auf einen beliebigen Zustandsraum [5].

Jetzt können wir das Gedankenexperiment in der eben besprochenen Versuchsanordnung, in zwei Serien starten. In der ersten Serie wird eine nicht polarisierte ebene Welle an dem Medium gestreut und die p=2 Komponente der Amplituden wird auf dem Schirm abgebildet. In mehreren Stufen erfolgt dann die Reduzierung der kleinen Halbachse (b) während die große Halbachse konstant bleibt. Die Mie-Streuung kann man in dieser Serie noch direkt mit Hilfe der elliptischen Wellenfunktion berechnen. In der zweiten Serie kommt es zur Streuung einer vertikal polarisierten Welle an ein abgeplattetes Ellipsoid und diese Amplituden werden ebenfalls dargestellt. In diesem Fall erfolgt die stufenweise Dehnung der großen Halbachse (a) und die kleine Halbachse (b) bleibt kostant. Feng Xu und James Lock [1] wählten hier zur Berechnung des Streuverhaltens die T-Matrix-Methode, damit bei derart vergrößerten Ellipsoiden die Rechenzeit in einem akzeptablen Rahmen bleibt. In beiden Serien bleibt die Relation (a>b) erhalten, so dass mit der Veränderung von a/b eine Zunahme der Abplattung verbunden ist. Eine Auswahl der in beiden Serien entstandenen Bilder sind als Streukaustiken in Tab. 3 geordnet aufgeführt. Besondere und interessante Fälle dieser Art sind zum Vergleich sind in Tab. 4 zusammengestellt. Diese Streukaustiken schauen wir uns nun genauer an.

Die Abbildungen Tab. 3, **1.** und Tab.3, **5.** zeigen die Streukaustiken der Kugelsymmetrie für den Start beider Serien. Es ist ein Muster erkennbar, welches man ohnehin erwarten würde, nämlich den hellen Ring als Regenbogen und die vielen Beugungsringe als überzählige Bögen. Von der Katastrophentheorie aus betrachtet handelt es sich bei dieser Streukaustik um eine Faltenkatastrophe, auch wenn es erstmal nicht danach aussieht. Die Falte ist mit der Kodimension 1 die einfachste und unscheinbarste Elementar-katastrophe (Tab. 2), da sie von nur einem Parameter abhängt. Die Falte ist ein Punkt auf einer Linie oder eine Krurve auf einer Fläche oder eine Fläche in einem Raum. Diese wollen wir uns im Zusammenhang mit den Abbildungen Tab. 3, **1.** und Tab.3, **5.** etwas genauer ansehen. Wie man vom Standpunkt der geometrischen Optik die Zustands- und Kontrollparameter definiert und die Falte grafisch darstellen kann, ist auf Seite 272 bei Berry [6] am Beispiel des einfachen Regenbogens sehr gut erläutert. Interessant ist nun die Frage: Wie lassen sich die überzähligen Bögen mit der Faltenkatastrophe erklären? Es ist ja bekannt, dass der Regenbogen mit seinen überzähligen Bögen durch die Airy-Funktion A_i beschrieben wird. Dazu schauen wir uns den Graph von A_i an (Tab. 5).

Tab. 5: – Graph der Airy-Funktionen Ai und Bi [12] und Gleichung für A_i in Parameterdarstellung nach Berry, Seite 284-285, [6].

Der Graph von A_i zeigt auf den ersten Blick einen unterschiedlichen Verlauf der Funktion. Im Intervall C>0 strebt $\Psi(C)$ gegen Null. Im Fall C=0 ist der Anstieg von $\Psi(C)$ gleich eins und im Intervall C<0 wird der Anstieg immer flacher, bis er schließlich negativ wird. Für C<0 existieren für den Integranden zwei stationäre Punkte (in der geometrischen Optik zwei Strahlen) als Wendepunkte, zwischen denen diese Funktion in diesem Intervall oszilliert. Die überzähligen Bögen sind also ein Teil der Faltenkatastrophe und stellen in der physikalischen Interpretation die Interferenzbögen dar. Man erkennt auch, daß in der Parameterfassung der Funktion A_i nach Berry [6] die Normalform als Term im Integranden bereits enthalten ist.

Bei einer stufenweise zunehmenden Abplattung des Streukörpers und Beibehaltung der Kodimension kommt es zunächst einmal zur Deformation der Falte im Vergleich zur Normalform. Die Streukaustik erscheint dann auch abgeplattet. Bei einem Verhältnis der Halbachsen von a/b=1,15 (Tab. 3, 2.) und (Tab. 3, 6.) bilden sich in der Äquatorebene der Streukaustiken weitere Helligkeitsmuster heraus. Da mit a/b=1,15 bereits eine deutliche Abplattung verbunden ist, ergibt sich die Notwendigkeit die Kodimension auf zwei zu erhöhen und einen weiteren Kontrollparameter hinzuzufügen. Denn die Kugelsymmetrie ist in die Axialsymmetrie übergegangen, so dass auf Grund von zwei unterschiedlichen Halbachsen auch zwei Kontrollparameter erforderlich sind. Nach Tab. 2 ist die Spitzenkatastrophe die nächst auftretende Elementarkatastrophe mit zwei Kontrollparametern. Die Spitze bildet sich am Berührungspunkt zweier aufeinander zulaufenden Falten heraus (Tab. 4, 3.). Eine bessere Abbildung mit leichten räumlichen Eindruck der Spitze findet man bei Berry [8]. Die Gesamtdarstellungen der Streukaustiken (Tab. 3, 2.) und (Tab. 3, 6.) lassen nicht sofort erkennen, dass es sich hierbei um Spitzen handelt. In Tab. 4, 1. befindet sich daher ein detailreicher Ausschnitt einer Streukaustik von Marston und Trinh [10]⁴⁾. Auf der linken Seite ist die deformierte Falte mit Interferenzstreifen gut zu erkennen, während sich etwa in der Mitte des Bildes eine gut ausgeprägte Spitze mit den aufeinander zulaufenden Falten herausgebildet hat. Auch bei diesen Falten sind die Interferenzstreifen zu erkennen. Bei Marston und Trinh [10]⁴ beginnt die Spitze bereits bei einem Verhältnis der Halbachsen von a/b=1,07. Allerdings ist a mit ca. 1400 µm ziemlich groß im Vergleich zu den in Tab. 3 angegebenen großen Halbachsen, so dass sich die Spitze in diesem Fall deutlich herausbilden kann. Die Abbildungen Tab. 4, 2. und Tab. 4, 6. zeigen aber auch, dass die Ausbildung der Spitze auf Kosten des Lichtmusters geht, welches wir als den Regenbogen sehen würden. Der Scheitel ist nur noch sehr schwach ausgeprägt. Im Fall des vertikal polarisierten Lichtes (Tab. 4, 6.) ist er sogar völlig verschwunden. Die Helligkeit ist hier vielmehr um die Fußpunkte bei $\Phi=0^{\circ}$ und Φ =180°, sowie in Horizontnähe verteilt. Wird die Exzentrizität a/b weiter vergrößert, so kommt es zur Bildung einer weiteren Elementarkatastrophe, des hyperbolischen Nabelpunktes (hyperbolic umbilic) (Tab. 3, 3. und Tab. 3, 7., sowie Tab. 3, 4. und Tab. 3, 8.). Diese Helligkeitsmuster sind im vertikal polarisierten Licht noch besser zu erkennen als im nicht polarisierten Licht. Die bei einem Verhältnis der Halbachsen von a/b=1,15 vorhanden linken und rechten Bogensegmente ziehen sich weiter zusammen und bilden dann die hyperbolischen Nabelpunkte. Der hyperbolic umbilic hat die Kodimension 3 und der Keim besteht aus einer Summe zweier Zustandsparameter (Tab. 2). Bei a/b=1,25 bildet sich im Scheitel ein schmaler konvexer Lichtstreifen heraus, welcher bei a/b=1,30 leicht konkav erscheint. Auch bei Marston und Trinh $[10]^{4}$ (Tab. 4, 4.) ist bei a/b=1,31 ist der hyperbolische Nabelpunkt gut zu erkennen, und die Spitze ist nicht mehr vorhanden (vergleiche Tab. 4, 1. mit Tab. 4, 4.). Die Abbildung Tab.4, 5. ist eine Auschnittvergrößerung von Tab. 3, 4. und Tab. 4, 8. ist die Vergrößerung von Tab. 3, 8., (von Feng Xu und James Lock [1]) welche beide den Nabelpunkt sehr gut zeigen. Nach neueren Untersuchungen von James Lock und Feng Xu [14] führt die Vergrößerung der Exzentrizität zu einem Zusammenwachsen der Strahlen in den Streumedien und sie verlassen die Tröpfchen in gleicher Richtung oberhalb und unterhalb ihrer Äquatorebenen. So kommt es zur Ausbildung der Spitze und weiterer Elementarkatastrophen mit höheren Kodimensionen. Feng Xu und James Lock [1] zeigten in ihrer Präsentation noch Streukaustiken von einem weiteren Tropfenmodell, welches in diesem Zusammenhang noch nicht besprochen wurde, ein ummanteltes abgeplattetetes Ellipsoid. Es ist schematisch mit den unterschiedlichen Strahlengängen in Tab. 4, 7. abgebildet. Die Ummantelung ist durch zwei Teilräume mit unterschiedlichen Brechungsindizes gekennzeichnet, so dass sich auch zwangsläufig unterschiedliche Strahlenwege ergeben. Die Streukaustiken zeigen für a/b=1,30 (Tab. 4, 9.; Tab. 4, 10. und Tab. 4, 11.) kein qualitatives anderes Bild. In allen Fällen ist der hyperbolische Nabelpunkt gut zu erkennen. In Tab. 4, 11. ist ein veränderter hyperbolischer Nabelpunkt abgebildet, der durch die Überlagerung der Strahlenwege α und β entstanden ist.

2.3. Zusammenfassung und Diskussion

Die Präsentation von Feng Xu und James Lock [1] hat in eindrucksvoller Weise gezeigt, dass durch die Mie-Streuung die gleichen Elementarkatastrophen entstehen wie durch rein wellenmechanische Betrachtungen. Damit ist ein wichtiger Schritt zur Schaffung einer verallgemeinerten Theorie des Regenbogens vollzogen. Weiterführende Arbeiten zu diesem Thema sind inzwischen von Feng Xu; James Lock und Cameron Tropea [13] sowie James Lock und Feng Xu [14] publiziert. Die Streutheorie liefert zwar ebenfalls Kaustiken, die Bedeutung, Klassifizierung und physikalische Interpretation der speziellen Lichtmuster, die im Zusammenhang mit bestimmten Tropfenformen entstehen, ist nur in Verbindung mit der Katastrophentheorie möglich. Es ist schon etwas länger bekannt, dass man auf der Grundlage von Interferenzbögen auf die Tropfengröße schließen kann (siehe M. Minnaert [15]). Mit diesem Verfahren ist es nun möglich neben der Größe auch Rückschlüsse auf die Geometrie und Form der Regentropfen zu ziehen. Letztendlich hinterlässt jeder Tropfen seinen Fingerabdruck durch ein definiertes Lichtmuster.

Wie ist es nun möglich die Theorie mittels gezielter Beobachtung von Regenbögen zu begleiten? Wenn die oben beschriebenen Katastrophen im Labor und durch Simulationen erzeugt werden können, dann treten sie prinzipiell auch in der Natur auf. Wir dürfen allerdings nicht davon ausgehen, dass sie so deutlich zu sehen sind wie auf den Abbildungen in Tab. 3 und Tab. 4. In der freien Natur ist das Licht kaum parallelisiert. Weiterhin tritt hier hauptsächlich die Mehrfachstreuung auf. Äußere Reflexionen stören das gesamte Erscheinungsbild, der horizontale Temperaturgradient zwischen Niederschlag und Umgebung (bei Schauer-Wetterlagen) ist nicht zu vernachlässigen. Die Zusammensetzung des Niederschlages in Geometrie und Größe der Tropfen ist nicht einheitlich. Es sind also viele Faktoren die die Sichtbarkeit des Regenbogens im allgemeinen und ganz besonders dieser speziellen Helligkeitsmuster beeinträchtigen. In den meisten Fällen dürften diese Katastrophen sogar durch andere Effekte überlagert sein.

Abb. 1: Roter Regenbogen. Aufgenommen gegen 19:20 Uhr MESZ an der Wetterwarte Neuhaus/Rwg. Der Regenbogen entstand nur an Fallstreifen (virga), die im unteren Teil diese auffällige Verdickung hervorbrachten; (20.8.2007); Foto: Manig, Rüdiger [16].

Tab. 6: – Fotos von Regenbögen mit besonderen Kaustiken, wie sie in der Natur bei vorwiegend elliptischen Tropfenformen von $a/b \approx 1,15$, mit einheitlicher Geometrie auftreten könnten.

Tab. 6 enthält zwei Fotos, die ähnliche Lichtmuster zeigen wie die in Tab. 3, **2.**, eine hellere Fläche am Fuße des Regenbogens und ein leuchtender horizontaler Streifen. Es ist ohne Simulation sehr gewagt diese Fotos mit den oben besprochenen Prozessen in Verbindung zubringen, weil die entscheidende Information, z.B. über die Bewölkung, Art und Intensität des Niederschlags fehlt. Dennoch sie sind ein gutes Beispiel zur Demonstration von Sonderformen an Regenbögen wie sie im Niederschlag mit mehrheitlich elliptischen Tropfenformen bei einem Verhältnis der Halbachsen von ca. 1,15 und bei tief stehender Sonne zu erwarten sind. Die interessantesten Erscheinungen in und an Regenbögen treten Tab. 3 zur Folge hauptsächlich in der Nähe des Horizontes auf, so dass Beobachter von Bergstationen sich in einer hervorragenden Position befinden, da sie in der Regel freie Sicht zum Horizont und noch darunter haben. Im Flachland hingegen ist der Horizont oft durch Sichthindernisse blockiert. Trotz aller Schwierigkeiten und Einschränkungen lohnt es sich in Regenbögen nach merkwürdigen Lichtstreifen, Verdickungen, hellen Lichtflecken, hyperbolischen Bögen usw. Ausschau zu halten. Am besten sind auswertbare Fotos mit Angaben zur verwendeten Optik. Bei auffälligen und hellen Erscheinungen ist es angebracht, in das entsprechende Objekt hinein zu zoomen. So sind möglicherweise noch feinere Details zu erkennen.

3. Äußere Reflexionen und regenbogenartige Kaustiken an Wassertropfen

Es hat sich gezeigt, dass Kaustiken hervorragend geeignet sind um Form und Geometrie von Regentropfen zu untersuchen und die entsprechenden Parameter zur Vorbereitung von Modellrechnungen und Simulationen zu definieren. Die Präsentation von Charles Adler; James Lock und Richard Fleet [18] beschäftigt sich mit Kaustiken, die durch äußere Reflexionen entstehen. Zu Beginn des Vortrages wurden jeweils zwei Fotos präsentiert, die unterschiedliche Tröpfchen mit unterschiedlichen Blendflecken zeigen. Beide Tröpfchen hängen am Grashalm (Tab.7). Es gelten hier folgende Ausgangsbedingungen:

- 1. Die Sonne befindet sich vorne und oben rechts bei einem Höhenwinkel von 48° .
- Diese Blendflecken entstehen durch Reflexion, nicht durch Brechung.
 Laut Fleet, zeigen etwa 1 von 100 Tröpfchen derartige Blendflecken.

Die extrafokale Aufnahme (Tab. 7, 2.) des Blendfleckes von (Tab. 7, 1.) zeigt die Airy Streifen klar, aber sie sind nicht stark gefärbt. Dies ist ein deutliches Zeichen dafür, dass der Blendfleck nicht durch Brechung entstanden ist. Im zweiten Fall (Tab. 7, 3.) und (Tab. 7, 4.) sind in der ebenfalls extrafokalen Aufnahme keine Airy Streifen sichtbar. Wie ist dieser Unterschied zu erklären? Dazu schauen wir uns die Fotos mit den Tröpfchen genauer an. Im ersten Bild (Tab. 7, 1.) befindet sich der Blendfleck an der Stelle, an der Tropfen am Blatt befestigt ist und das Bild (Tab. 7, 2.) zeigt die das bekannte Airy Muster. Im zweiten Bild (Tab. 7, 3.) befindet sich der Blendfleck etwa in der Mitte des Tropfens und es sind keine Streifen zu erkennen.

Tab. 7^{4} : – Reflexionen an Wassertröpfchen, Fotos wurden freundlicherweise von Richard Fleet für die Präsentation zur Verfügung gestellt. [18]

Anhängende Tropfen sind in unmittelbarer Umgebung des Berührungspunktes deformiert. Die Geometrie von anhängenden Tropfen wurde von Padday [19] erforscht und ein geometrisch parametrisierter Tropfen ist in Tab. 8, 1. dargestellt. Paddy fand heraus, dass in der Nähe des kreisförmigen Anhängpunktes eine Wendepunkt existiert, an dem die Krümmung von konkav nach konvex übergeht. An diesem Wendepunkt ist der Anstieg eins und bildet einen Kreis um den Tropfen, der in folgenden Ausführungen als Wendekreis bezeichnet wird. In Tab.8, 1. ist dieser Wendepunkt mit einem Pfeil gekennzeichnet. Geo-

metrische Form und Strahlengang in der Nähe des Wendekreises sind in Tab.8, 2. dargestellt. In der Umgebung des Wendekreises variiert der Öffnungswinkel in Abhängigkeit von der Krümmung der Oberfläche. Die Form der Kaustik wird also entscheidend vom Öffnungswinkel ξ beeinflusst. Der Streuwinkel reflektierten Lichtes geht in der Nähe des Wendekreis durch ein Profil Maximum (wie beim Regenbogen), was im Endeffekt eine Kaustik in Form einer Falte verursacht, womit wir wieder bei der Katastrophentheorie angekommen sind.

Tab. 8^{4} : – Geometrie und Kaustik anhängender, deformierter Tropfen ;Bild 1 [19]; Bilder 2,6,7,8 für Sonnenhöhe von $0^{\circ}[18]$.

Die Fernfeldform der Kaustik wird durch folgende Eigenschaften charakterisiert:

- 1) Die Regenbogen-Kaustik von einem Wassertropfen ist in der Form eines Kegels durch die hohe Symmetrie des Tropfens gekennzeichnet.
- 2) Die Reflexions-Kaustik vom anhängenden Tropfen hat eine kompliziertere Form aufgrund seiner geringeren Symmetrie.
- 3) Die Details in der Form der Kaustik werden vom Öffnungswinkel ξ bestimmt.

Die Form der Kaustik wird durch den Polarwinkel (ϕ) und den Azimutwinkel (θ) des Regenbogenstrahls als Funktion der kritischen Kurve auf der Oberfläche des Tropfens bestimmt. Beide Winken können parametrisch bestimmt werden. Die Grafiken (Tab. 8, **6**. bis Tab. 8, **8**.) zeigen die Form der Regenbogenskaustik für verschiedene Werte von Öffnungswinkel (bei einer Sonnenhöhe von 0°). Nach Abbildung Tab.8, **8**. kommt es bei einem Öffnungswinkel von 47,4° zur Bildung der Faltenkatastrophe.

Die Autoren dieser Präsentation versuchten die vorangegangenen theoretischen Betrachtungen durch ein Laborexperiment zu stützen. Der Aufbau des Experimentes sollte möglichst die realen Bedingungen wiedergeben, unter denen das Foto (Tab. 7, **1.**) entstanden ist. Der anhängende Tropfen wurde durch eine Spritze mit eben gefeilter Kanülenöffnung abgesetzt. Dann leiteten sie einen Laserstrahl in die Nähe des Berührungspunktes des abgesetzten Tröpfchens und untersuchten das gestreute Lichtmuster auf einem Bildschirm (siehe Tab. 8, **3.** bis Tab. 8, **5.**). Das Experiment wurde mit drei Tropfengrößen (klein, mittelgroß und groß) durchgeführt und folgende Effekte der Tropfengröße festgestellt. Aufgrund der wirkenden Schwerkraft haben große Tröpfchen kleinere Öffnungswinkel als kleine Tröpfchen, sodass sich Notwendigkeit ergab, den Öffnungswinkel ξ (also die Form der Kaustik) beim Übergang zu anderen Tropfengrößen zu kontrollieren. Das Experiment bestätigte ebenfalls das Auftreten der Faltenkatastrophe (Tab. 8, **5.**) an der Kaustik (Tab. 8, **4.**).

Zwischen der theoretischen Betrachtung und den Umständen unter denen die Fotos (Tab. 7) entstanden gab es dennoch Unterschiede in den Ausgangsbedingungen. Der Blendfleck auf dem Foto (Tab. 7, **1**.) ist bei einem hohen Sonnenstand dokumentiert, sodass der polare Streuwinkel (ϕ) sich in der Nähe von 90° befindet. In der Theorie (Tab. 8) wurde eine Sonenhöhe von 0° vorausgesetzt. Der Blendfleck ist aber erst bei einem Öffnungswinkel von etwa 63° plausibel. Die Arbeit von Padday [19] zeigt, dass dies bei einem Tropfenradius von etwa 1,2 mm der Fall ist. Die Tröpfchen auf den Fotos von Richard Fleet (Tab. 7) liegen im Bereich von 1-2 mm Radius.

In dieser Präsentation wurde gezeigt, dass bei einer physischen Deformation von Wassertropfen, hervorgerufen durch äußere Wechselwirkungen, es zu Unstetigkeit und sprunghaften Veränderungen an Kaustiken kommt. Diese Katastrophen treten sogar schon bei der wohl einfachsten Form der Streuung des Lichtes auf, nämlich der äußeren Reflexion. Die Dispersion dieser Airy-Streifen ist derart schwach, dass die Farben blass erscheinen im Vergleich zu den Farben der Brechung. Für die Beobachtung spielt dieser eine Fall isoliert betrachtet kaum eine Rolle, da einerseits die schwachen Farben der Falte in einer Reflexion mit einiger Wahrscheinlichkeit nicht wahrgenommen werden und andererseits tritt diese Falte auch nur am ganz bestimmten Ort eines deformierten Tropfens auf. In der Gesamtheit betrachtet sollte man schon davon ausgehen, dass die Deformation von Regentropfen gar nicht so selten ist. Turbolenzen und starke Scherwinde in Schauern und Gewittern lassen die Tropfen oszillieren und auch platzen. Auch die Koaleszenz von Tropfen führt ebenfalls zur Deformation. In der freien Natur zeigen sich diese Effekte dadurch, dass sie den gewöhnlichen Regenbogen durch Überlagerung beeinflussen. Es kann in Teilen des Regenbogens zu Verwaschungen oder gar Auslöschungen der Farben kommen, was für die Beobachtung wieder interessant sein dürfte.

Anmerkungen

¹⁾ Gelegentlich findet man in der Literatur an Stelle der Mie-Streuung auch den Begriff Lorenz-Mie-Streuung. In beiden Fällen handelt es sich um die gleiche Theorie. Gustav Mie konnte bei der Entwicklung der Streutheorie bereits auf Vorarbeiten des dänischen Physikers Ludvig Lorenz zurückgreifen.

²⁾ Die Katastrophentheorie wurde von René Thom (1972) begründet, wovon in der Literatur mehrere Versionen existieren. V. I. Arnold hat diese Theorie für mathematische Probleme weiter entwickelt (u. a. ADE-Klassifikation), R. Thom führte die Entwicklung zur Geomertisierung belebter und unbelebter Vorgänge in der Natur weiter und E.C. Zeeman modellierte Anwendungen in Medizin, Biologie und Soziologie auf der Grundlage dieser Theorie. In neueren Publikationen wird die Katastrophentheorie nicht mehr ausführlich dargestellt, da sie inzwischen in der Bifurkationstheorie aufgegangen ist [5]. Die Katastrophentheorie darf nicht mit der Chaostheorie verwechselt werden.

³⁾ Die Tabelle 1 erhebt keinen Anspruch auf Vollständigkeit. Weitere Forschungen zur Erklärung der Regenbögen auf der Grundlage der String-Theorie waren nicht Thema auf der Konferenz, so dass die Liste nach der Katastrophentheorie abgebrochen wurde.

⁴⁾ Abbildungen, graphische Darstellungen und mathematischen Symbole wurden aus den entsprechenden Power-Point-Präsentationen entnommen. Handschriftliche Eintragungen in den Grafiken sind zu besseren Lesbarkeit durch Zeichen in Druckschrift ersetzt worden. Formeln in Tab. 4 wurden mit einem Formeleditor anhand der handschriftlichen Vorlage neu erstellt. Die Grafiken und Bilder in Tab. 4 sind entsprechend der Anordnung durchnummeriert. Thematisch zusammengehörende Zeile und Spalten in Tab. 4 wurden mit der gleichen Hintergrundfarbe unterlegt und unterschiedliche Themen sind mit unterschiedlichen Farbtönen gekennzeichnet. Die Abbildungen Tab.4, **1.** und Tab.4, **4.** stammen ursprünglich von Marston und Trinh [10] und wurden von Feng Xu und James Lock für die Präsentation zitiert. Die Fotos in Tab. 7 wurden freundlicherweise von Claudia Hinz zur Verfügung gestellt. Tab. 8, **1.** nach J. F. Padday, wird von Charles L. Adler und James A. Lock zitiert. Tab. 8, **2.** Gleichung und Bedeutung der Variablen wurden zusätzlich in die Grafik eingefügt.

⁵⁾ Die T-Matrix-Methode ist ein numerisches Verfahren. Es ist speziell für die Computersimulation des Lichtstreuverhaltens an zufällig orientierten, axialsymmetrischen und ummantelten Streumedien entwickelt worden. Algorithmische Vereinfachungen wie die Linearisierung der Maxwell-Gleichungen, die Betrachtung von Partikeln mit einer ebenen Symmetrie und die Teilung der Matrix in unabhängige Untermatrizen bei Drehungen, erlauben eine schnellere effizientere Berechnung des Streuverhaltens. Die T-Matrix-Methode ist für alle Arten von Partikeln konzipiert. Weitere Informationen hierüber findet man bei Quirantes [11].

⁶⁾ Der Begriff Streukaustik hat hier einen modellhaften Charakter und kommt nur in diesem Artikel zur Anwendung, um deutlich zu machen, dass das beschriebene Helligkeitsmuster aus einer Simulation mittels der Mie-Streuung entstanden ist. Für die Praxis ist es eher unerheblich zu kennen, wie das Helligkeitsmuster entstanden ist. In der freien Natur sind die physikalisch-optischen Prozesse noch komplexer, sodass eine weitere Gliederung des Begriffes Kaustik als nicht notwendig erscheint.

Quellen

- [1] Feng Xu and Lock, James A.: "Computed first order rainbow of an oblate speroidal particle using Lorenz-Mie-Debye Theory", ppt-Vortrag.
- [2] Schmidt, Rainer: "Regenbögen auf der 10. Konferenz "Licht und Farbe in der Natur" Teil 1 – Der tertiäre Regenbogen", Meteoros, Jg.13, Nr.9, (2010), S. 186 – 198.
- [3] Triebel, H.: "Analysis und mathematische Physik",
 BSB B.G. Teubner Verlagsgesellschaft, 2. Aufl., Leipzig, (1984),
 "Singularitätstheorie", S.396-411,
 "Katastrophe: Theorie und Anwendung", S.411-429.
- [4] "Katastrophentheorie (Mathematik)", URL:http://de.wikipedia.org/wiki/Katastrophentheorie_(Mathematik), (Zugriff: 25.09.2010).
- [5] Jetschke, G.: "Katastropentheorie", S.203-214, in: "Mathematik der Selbstorganisation", Verlag Harri Deutsch, 2.korrigierte und erweiterte Auflage, Frankfurt am Main (2009).
- [6] Berry, M. V. and Upstill, C.: "Catastrophe optics: morphologies of caustics and their diffraction patterns", p.257-346 in: E. Wolf: "Progress in Optics", Amsterdam, Vol.18, (1980), [Tabl. 1, p.268], URL:http://www.phy.bris.ac.uk/people/berry_mv/the_papers/Berry089.pdf, (Zugriff: 25.09.2010).
- [7] Berry, M. V. "Generalized rainbows in wave physics: how catastrophe theory has helped", in: Rainbows and catastrophes, ed. N Neskovic, Boris Kidric Institute, Belgrade, (1990), p.19-23, URL:http://www.phy.bris.ac.uk/people/berry_mv/the_papers/Berry199.pdf, (Zugriff: 25.09.2010),
- [8] Berry, M. V. and Klein, S.: "Die Farben von Kaustiken: Katastrophen in Regentropfen und Strukturglas", Physikalische.Blätter, Weinheim, Bd.53, H.11, (1997), S.1095-1098, URL:http://www.phy.bris.ac.uk/people/berry_mv/the_papers/Berry287.pdf, (Zugriff:25.09.2010).
- [9] Berry, M. V. and Howls, C. J.: "Axial and focal-plane diffraction catastrophe integrals", Journal of physics; Series A: Mathematical and theoretical, Bristol,

Vol.43, (2010), 375206 (13pp),

- URL:http://www.phy.bris.ac.uk/people/berry_mv/the_papers/Berry425.pdf. (Zugriff: 25.09.2010).
- [10] Marston, P. L.; Trinh, E. H.: "Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops", Nature, London, Vol. 312, (1984), p.529-531.
- [11] Quirantes, Arturo: "A T-matrix and computer code for randomly oriented, axially symmetric coated scatters",
 Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 92, (2005) p.373-381
 URL:http://www.ugr.es/~aquiran/ciencia/arti16.pdf, (Zugriff: 17.09.2010).
- [12] Airy-Funktion: URL:http://de.wikipedia.org/wiki/Airy-Funktion, (Zugriff: 06.10.2010).
- [13] Feng Xu; Lock, James A. and Tropea, Cameron: "Debye series for light scattering by a spheroid", Journal of the Optical Society of America, New York, NY, Series A, Vol.27, No.4, (2010), p.671-686.
- [14] Lock, James A; Feng Xu: "Optical caustics observed in light scattering by an oblate spheroid", Applied Optics, Washington, DC, Vol.49, Issue 8, (2010), p.1288-1304.
- [15] Minnaert, Marcel: "X. Regenbogen, Ringe, Kränze, Heiligenschein", S. 239-316, in: "Licht und Farbe in der Natur", deutsche Ausgabe, Birkhäuser Verlag, Basel (1992).
- [16] Manig, Rüdiger:,,Roter Regenbogen an der Wetterwarte Neuhaus/Rwg.",
 (Foto, Meteoros-Bildarchiv),
 URL:http://www.meteoros.de/bildarchiv/image.php?page=2&gallery_id=51&image_id=1831,
 (Zugriff: 08.10.2010).
- [17] Hinz, Claudia: "Regenbogenfragmente", (Foto, Meteoros-Bildarchiv), URL:http://www.meteoros.de/bildarchiv/image.php?page=1&gallery_id=51&image_id=1951, (Zugriff: 08.10.2010).
- [18] Adler, Charles L.; Lock, James A. and Fleet, Richard: "External Reflection Rainbow Caustics", ppt-Vortrag.
- [19] Padday, J.F.: "The profiles od axially symmetric menisci", Philosophical Transactions of the Royal Society London, Series A, Vol.269, (1971), p.265-293.

Halo-Phänomen am 20. Juli 2010 in Nordwest-Island

von Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam

Fünf Tage Sonnenschein und blauer Himmel lagen hinter uns, als wir am 20. Juli diesen Jahres durch die Westfjorde Islands unterwegs waren. Um die späte Mittagszeit waren wir auf der Suche nach einem hübschen Picknickplatz mit Ausblick auf "Feuer und Eis" - Vulkane und Gletscher. So ging der Blick zunächst nicht nach oben, als wir anhielten. Einige aufkommende Cirren machten den Himmel dann doch schnell sehr "spannend". Ich ließ Picknick Picknick sein, schnappte mir die Kameras und versuchte, mich am Himmel zu orientieren. Der Anblick war überwältigend. Diverse Bögen und Nebensonnen warten deutlich zu sehen, neben den "normalen" Erscheinungen konnte ich zahlreiche Besonderheiten erkennen, ohne sie im Detail zu benennen. Aber dazu gibt es ja Fotos und die Bildbearbeitung! Nach ca. einer halben Stunde und knapp 60 Fotos begann sich das Halo-Phänomen langsam aufzulösen, zunächst verschwand der Horizontalkreis, bis nur noch der 22°-Ring schwach zu sehen war. Die Cirren wurden weniger und wir hatten den blauen Himmel wieder. Leider blieb dieses Ereignis die einzige Halobeobachtung unseres Urlaubs in Island, obwohl ich die restliche Zeit besonders aufmerksam den Blick an den isländischen Himmel gerichtet habe.

Ergänzung von Claudia Hinz:

Als das Halophänomen auftrat, stand die Sonne 45° über dem Horizont. Bei dieser Sonnenhöhe stehen die Nebensonnen knapp außerhalb des umschriebenen Halos. Eine derartige Helligkeit der Nebensonnen bei dieser Sonnenhöhe ist dabei höchst ungewöhnlich. Insgesamt wurden folgende Haloarten gesehen:

22°-Ring, beide Nebensonnen, umschriebener Halo, Infralateralbogen, vollständiger Horizontalkreis mit 120°-Nebensonnen, Gegensonne, Wegeners Gegensonnenbogen und eventuell auch der Parrybogen, der allerdings bei dieser Sonnenhöhe sehr schwer vom oberen Berührungsbogen unterscheidbar ist.

Ich habe versucht, aus den Einzelbildern mit HUGIN ein Panorama zu erstellen, leider ist es ziemlich verzerrt und die Gegensonne ist zu weit rechts im Bild. Dennoch kann man das Ausmaß des Halophänomens sehr gut erkennen (in der PDF-Ausgabe sind die Bilder farbig und besser erkennbar!).

Simulation (mit Halosim 3.6 von Les Cowley und Michael Schroeder) der beobachteten Haloarten.

22°-Ring, umschriebener Halo, Nebensonnen und Horizontalkreis

22°-Ring, umschriebener Halo, rechte Nebensonne und Horizontalkreis, Wegeners Gegensonnenbogen

22°-Ring, umschriebener Halo, rechte Nebensonne und Horizontalkreis, Infralateralbogen, Wegeners Gegensonnenbogen

Horizontalkreis mit Wegeners Gegensonnenbogen

Programm des 1. Deutschen Meteoritenkolloquiums zum 25. Jahrestag des Meteoritenfalls in Salzwedel (Hohenlangenbeck) am 13. und 14. November 2010 in Kuhfelde

Samstag, 13.11.2010

10:00 h Begrüßung

Der Meteoritenfall bei Salzwedel - eventuelle weitere Fundmöglichkeiten

- * 10:30 h Fall-Beobachtungen André Knöfel
- * 10:45 h Fund des Meteoriten Patric Scharff
- * 11:00 h Beschreibung des Meteoriten war es Jan Kahle? Rainer Bartoschewitz
- * 11:15 h Mögliches Meteoriten-Streufeld Thomas W. Grau
- * 11:30 h Diskussion mit Besuchern zum Fall Forum

Der "Lebenslauf" des Meteoriten Salzwedel - Chemie und Isotope

- * 13:15 h Namensgebung "Salzwedel" Rainer Bartoschewitz
- * 13:30 h Mineralogie und Petrografie Dr. Joachim Matthes
- * 13:45 h Chemische Zusammensetzung Prof. Dr. Siegfried Niese
- * 14:00 h Edelgas-Isotope Dr. Ulrich Ott
- * 14:15 h Radionuklide Prof. Dr. Siegfried Niese
- * 14:30 h Mutterkörper Dr. Gabriele Arnold

Gefahren aus dem Weltraum

- * 15:00 h Meteoritenunfälle André Knöfel
- * 15:15 h Von Sternschnuppen und Mega-Brocken Dr. Jürgen Rendtel
- * 15:30 h Feuerkugelnetz Dieter Heinlein
- * 15:45 h Asteroiden-Jäger Gerhard Lehmann
- * 16:00 h Asteroide Alarm! Gefahrenabwehr Thimo Grundmann
- * 16:30 h Diskussion mit den Besuchern Forum

Sonntag, 14.11.2010

Kosmische Tourismusförderung - Vom Einschlag zum Weltkulturerbe

- * 10:00 h Meteoritenfälle in Sachsen-Anhalt Dr. Thomas Witzke
- * 10:30 h Gedenksteine und Infotafeln Rainer Bartoschewitz
- * 10:45 h Meteorite als Naturdenkmale Klaus Becker
- * 11:00 h Wie Krater zum Weltkulturerbe werden Prof. Dr. Uwe Reimold
- * 11:30 h Deutsche Meteorite und Tourismus Rainer Bartoschewitz
- * 11:45 h Diskussion mit den Besuchern Forum

Hohenlangenbeck - An Fallpunkt des Meteoriten von Salzwedel

- * 14:00 h Enthüllung des Gedenksteines
- * 14:30 h Spaziergang im Streufeld

Das Kolloquium findet am 13. und 14. November 2010 im Hotel ,Kuhfelder Hof' in Kuhfelde statt. Weitere Informationen unter http://www.meteorite-lab.homepage.t-online.de/index_dateien/kolloquium.htm

English summary

Visual meteor observations in August 2010: twelve observers (!) recorded data of 1925 meteors in 104.40 hours (covering 20 nights). The weather conditions were very poor around the Perseid maximum, but nevertheless, a reasonable amount of data was recorded.

At the end of the month, the Aurigid maximum coincided with a bright Last Quarter Moon, but no unusual activity was reported.

Perseids 2010: besides the `regular' maximum on August 12/13, additional activity was expected due to a dust trail formed of meteoroids from perihelion passages in 441, 1479 and 1862. The graph of the IMO live analysis shows no exceptional peak in the entire period, although a detailed analysis considering the profile of the population index r could modify the rough information.

Video meteor observations in August 2010: the IMO network has 50 cameras now. 25 of these collected data of in more than 20 nights, and in total more than 32500 meteors in 4500 hours were recorded - more than in any other month. New investigations of the effective camera field are shown. This is an important step towards meteoroid flux calculations.

Hints for the visual meteor observer in November 2010: the radiants of the Taurid complex are in Taurus at the beginning of the month. Enhanced rates are possible between November 5 and 12. The activity rise of the Leonids can be observed until November 17. The maximum is expected near 2115 UT. Already at 15 UT another peak may occur which is visible only from far eastern locations. Full Moon occurs on November 21, so that the weak alpha-Monocerotids cannot be observed. The December-Monocerotids start their activity period on November 27.

Halo observations in July 2010: 30 observers noted 459 solar haloes on 31 days and 17 lunar haloes on seven days. Like in March 2010, the halo activity index for July was above the average. However, the very high halo activity concerned only the first two days of the month and the number of days with haloes remained below the long-term averages. Two small peaks in the activity graph occurred on July 20 and 27 due to high clouds from the west.

Rainbows - part 2 of a report from the "Light and Color in Nature" conference: in this paper Rainer Schmidt describes the effects of caustics and catastrophies in the formation rainbows and the modification of diffraction patterns.

A complex halo was observed on July 20 from northwest Iceland. The observation is described and a panorama image is produced.

The "1st German Meteorite Colloquium" takes place on November 13/14 at the location of the Salzwedel fall 25 years after the event.

Unser Titelbild...

... zeigt eine Zeichnung von Georg Krause aus Neu-Staßfurt, die seine Beobachtung der Feuerkugel beim Fall des Meteoriten im Bezirk Madgeburg vor 25 Jahren darstellt. Das kleine Foto zeigt den Meteoriten, den Patric Scharff nach dem Fall vom 14. November 1985 in Hohenlangenbeck fand. Heute trägt der Meteorit den Namen "Salzwedel". Aus diesem Anlass findet das 1. Deutsche Meteoritenkolloquium findet daher am 13. und 14. November 2010 in Kuhfelde statt und ist diesem Meteoritenfall gewidmet. Weitere Informationen auf Seite 228 in dieser Ausgabe und unter http://www.meteorite-lab.homepage.tonline.de/index_dateien/kolloquium.htm

Impressum:

Die Zeitschrift METEOROS des Arbeitskreises Meteore e. V. (AKM) über Meteore, Leuchtende Nachtwolken, Halos, Polarlichter und andere atmosphärische Erscheinungen erscheint in der Regel monatlich. METEOROS entstand durch die Vereinigung der Mitteilungen des Arbeitskreises Meteore und der Sternschnuppe im Januar 1998. Nachdruck nur mit Zustimmung der Redaktion und gegen Übersendung eines Belegexemplares. Herausgeber: Arbeitskreis Meteore e. V. (AKM), c/o Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam Redaktion: André Knöfel, Am Observatorium 2, 15848 Lindenberg Meteorbeobachtung visuell: Jürgen Rendtel, Eschenweg 16, 14476 Marquardt Video-Meteorbeobachtung: Sirko Molau, Abenstalstraße 13 b, 84072 Seysdorf Beobachtungshinweise: Roland Winkler, Merseburger Straße 6, 04435 Schkeuditz Feuerkugeln: Thomas Grau, Puschkinstr. 20, 16321 Bernau Halo-Teil: Wolfgang Hinz, Bräuhausgasse 12, 83098 Brannenburg Meteor-Fotonetz: Jörg Strunk, Kneippstr. 14, 32049 Herford EN-Kameranetz und Meteorite: Dieter Heinlein, Lilienstraße 3, 86156 Augsburg Polarlichter: Ulrich Rieth, Rumpffsweg 37, 20537 Hamburg Bezugspreis: Für Mitglieder des AKM ist 2010 der Bezug von METEOROS im Mitgliedsbeitrag enthalten. Für den Jahrgang 2010 inkl. Versand für Nichtmitglieder des AKM 25,00 €. Überweisungen bitte mit der Angabe von Name und "Meteoros-Abo" an das Konto 2913417200 von Ina Rendtel bei der SEB Potsdam, BLZ 160 101 11. Anfragen zum Bezug an AKM, c/o Ina Rendtel, Mehlbeerenweg 5, 14469 Potsdam

oder per E-Mail an: Ina.Rendtel@meteoros.de